Gruppenarbeit im Mathematikstudium

Unsere Servicelehre

Mathematikveranstaltungen für Studierende anderer Fachbereiche

Lehrveranstaltungen im Wintersemester

Im Wintersemester 2023/24 bietet der Fachbereich Mathematik folgende Lehrveranstaltungen für Studierende anderer Fachbereiche an:

Inhalte
  • Grundlegende Konzepte und Rechentechniken: Mengentheorie, Reelle und komplexe Zahlen (speziell kartesische Koordinaten und Polarkoordinaten, Wurzeln komplexer Zahlen), Lösung von Gleichungen und Ungleichungen
  • Funktionen einer Variablen: Grundlegende Konzepte und elementare Funktionen, Stetigkeit, Symmetrie, Monotonie, Umkehrfunktionen, rationale Funktionen, Asymptoten, Folgen und Reihen (Grenzwertbegriff, Rechenregeln), Potenzreihen (Konvergenzverhalten und Rechnen mit Potenzreihen), Exponentialfunktion und Logarithmus, trigonometrische Funktionen
  • Differenziation (eindimensional): Definition von Grenzwerten und Bedeutung der Ableitung, Rechentechniken, implizite Ableitung, Mittelwertsatz, Extremwerte, Regel von de l’Hospital, Taylor-Entwicklung, Darstellung von Funktionen durch Taylorreihen, Anwendungen (Fehlerabschätzung und Approximation)
  • Integration (eindimensional): Definites/Indefinites Integral (Stammfunktion, Riemann-Summe, Hauptsatz der Differential- und Integralrechnung, Mittelwertsatz), Integrationstechniken (Substitution, partielle Integration) Integration von Potenzreihen und rationalen Funktionen, Ideen der numerischen Integration, uneigentliche Integrale, verschiedene Anwendungen

Kontaktzeit

4 SWS Vorlesungen
2 SWS Übungen
2 SWS Hörsaalübung


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Sa. 09.03.2024

Einsichtnahme: TBA


Angebotsturnus

Die Veranstaltung findet jedes Semester statt.

Hier geht es zum KIS-Eintrag:
Höhere Mathematik I (Vorlesung)
Höhere Mathematik I (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Höhere Mathematik I WS 2023/24


Kontakt

HM-Büro

E-Mail: hm(at)math.rptu.de

Inhalte
  • Vektorrechnung: Vektoren (insb. Rn), Unterräume, lineare Unabhängigkeit, Basis, Dimension, Skalarprodukt, Orthogonalität, Projektionsaufgaben, Vektorprodukt
  • Matrixkalkül: Definition, Rechenregeln, Basiswechsel, lineare Abbildungen, Beschreibung von linearen Abbildungen über Matrizen, lineare Gleichungssysteme (Beschreibung über Matrizen, Struktur der Lösungen, Gaussalgorithmus), Invertierbarkeit, Berechnung von Inversen, Normalengleichungen und Ausgleichsprobleme, Determinanten, Eigenwerte und –vektoren (Diagonalisierbarkeit, Hauptachsentransformation)
  • Differenziation (mehrdimensional): Skalar- und Vektorfelder, Kurven, Niveaulinien, totale und partielle Differenzierbarkeit, Richtungsableitung, implizites Differenzieren, Satz von der Umkehrfunktion, Differenziationsregeln (insb. Umkehrfunktion und Kettenregel), Taylorentwicklung, Extrema unter Nebenbedingungen (skalare Funktionen mehrerer Veränderlicher), Gradientenfelder, Potentiale, Divergenz und Rotation, Anwendungen
  • Integration (mehrdimensional): Normalbereiche, Integrale mehrerer Veränderlicher über Normalbereichen

Kontaktzeit

4 SWS Vorlesungen
2 SWS Übungen
2 SWS Hörsaalübung


Inhaltliche Voraussetzungen

Höhere Mathematik I


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Sa. 09.03.2024

Einsichtnahme: TBA


Angebotsturnus

Die Veranstaltung findet jedes Semester statt.

Hier geht es zum KIS-Eintrag:
Höhere Mathematik II (Vorlesung)
Höhere Mathematik II (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Höhere Mathematik II WiSe 2023/24


Kontakt

HM-Büro

E-Mail: hm(at)math.rptu.de

Inhalte

Mehrdimensionale Integralrechnung, insbesondere:

  • Parametrisierung von Kurven und Flächen im Rn,
  • Berechnung von Oberflächen- und (skalaren und vektoriellen) Kurvenintegralen im Rn,
  • Tangentialräume und Differential, 
  • Klassische Operatoren auf Vektorfeldern: div, rot, grad
  • Integralsätze von Gauß und Stokes, Green’sche Formeln, Anwendungen im 3-dimensionalen Euklidischen Raum

Kontaktzeit

2 SWS Vorlesungen
1 SWS Übungen
1 SWS Hörsaalübung


Inhaltliche Voraussetzungen

Höhere Mathematik I und Höhere Mathematik II


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Sa. 07.09.2024

Einsichtnahme: TBA


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester in der ersten Hälfte der Vorlesungszeit statt.

Hier geht es zum KIS-Eintrag:
HM: Vektoranalysis (Vorlesung)
HM: Vektoranalysis (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Höhere Mathematik III: Vektoranalysis & Differentialgleichungen WS 2023/24


Kontakt

HM-Büro

E-Mail: hm(at)math.rptu.de

 

Inhalte

Grundlegende Konzepte zur Behandlung gewöhnlicher und partieller Differentialgleichungen:

1a. Gewöhnliche Differentialgleichungen: 

  • Differentialgleichungen erster Ordnung: Existenz und Eindeutigkeit, Autonome Differentialgleichungen erster Ordnung, Separationsansatz, Variation der Konstanten, explizit lösbare Fälle, Anfangswertprobleme
  • Lineare Differentialgleichungen:  Homogene lineare Systeme, Matrix-Exponentialfunktion, Variation der Konstanten, Differentialgleichungen n-ter Ordnung

1b. Partielle Differentialgleichungen:

  • Klassifikation und Wohlgestelltheit von partiellen Differentialgleichungen 2. Ordnung
  • Wellengleichung, Poissongleichung, Fouriertransformation
  • Lösungsmethoden: Separationsansatz, Fouriertransformation

1c. Numerische Lösung von Differentialgleichungen:

  • Einzelschrittverfahren (implizit/explizit)
  • Runge-Kutta-Verfahren
  • Schrittweitensteuerung

Kontaktzeit

2 SWS Vorlesungen
1 SWS Übungen
1 SWS Hörsaalübung


Inhaltliche Voraussetzungen

Höhere Mathematik I und Höhere Mathematik II


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Sa. 07.09.2024

Einsichtnahme: TBA


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester in der ersten Hälfte der Vorlesungszeit statt.

Hier geht es zum KIS-Eintrag:
HM: Vektoranalysis (Vorlesung)
HM: Vektoranalysis (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Höhere Mathematik III: Vektoranalysis & Differentialgleichungen WS 2023/24


Kontakt

HM-Büro

E-Mail: hm(at)math.rptu.de

Inhalte

Erarbeitung des mathematischen Grundwissens für Studierende des Bauingenieurwesens

Behandelte Themen:

  • Der Vektorraum Rn,
  • Matrizen,
  • Determinanten,
  • Lineare Gleichungssysteme,
  • Eigenwertprobleme,
  • Vektorrechnung und Analytische Geometrie,
  • Lineare Optimierung,
  • Wahrscheinlichkeitsrechnung
  • Anwendung der behandelten mathematischen Werkzeuge auf konkrete fachspezifische Problemstellungen aus verschiedenen Disziplinen des Bauingenieurwesens

Kontaktzeit

4 SWS Vorlesungen
2 SWS Übungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Di. 27.08.2024


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester statt.

Hier geht es zum KIS-Eintrag:
HM für Bauingenieure I (Vorlesung)
HM für Bauingenieure I (Übung)

Hier geht es zum OLAT-Kurs:

Höhere Mathematik für Bauingenieure I WS 23/24


Kontakt

Dr. Florentine Kämmerer

E-Mail: florentine.kaemmerer(at)math.rptu.de

Inhalte
  • Aussagen, Mengen, Beweismethoden, Abbildungen, Halbordnungen und Äquivalenz­relationen,
  • Ganze Zahlen, Division mit Rest, größter gemeinsamer Teiler und Euklidischer Algorithmus, Fundamentalsatz der Arithmetik, Chinesischer Restsatz über Z,
  • Gruppen, Bahnengleichung, Symmetriegruppen, Normalteiler und Quotientengruppe, Anwendung (z.B. Zählen von Isomorphieklassen von Graphen),
  • Ringe, Polynomringe, Einheitengruppe von Z/n, Anwendungen (z.B. Public-Key-Kryptographie, Pollard-Faktorisierung, Diffie-Hellman Schlüsselaustausch), Ideale und Quotientenringe, Integritätsringe und Körper, endliche Körper, Euklidische Ringe, Chinesischer Restsatz, Anwendungen (z.B. modulares Rechnen, Interpolation),
  • Vektorräume, Gaußalgorithmus, Basen und Dimension, Vektorraumhomomorphismen, Lösen linearer Gleichungssysteme, darstellende Matrix eines Homomorphismus, Algo­rithmen für Kern und Bild,
  • Isomorphismen, Basiswechsel, Anwendung (z.B. Wavelet-Transformation), Klassifikation von Homomorphismen, Homomorphiesatz, Anwendungen (z.B. Lineare Codes), Determinan­ten, Eigenvektoren, Anwendungen (z.B. Page-Rank Algorithmus)

Kontaktzeit

4 SWS Vorlesungen
2 SWS Übungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Mo. 18.03.2024


Angebotsturnus

Die Veranstaltung findet jedes Semester statt.

Hier geht es zum KIS-Eintrag:
MfI: Algebraische Strukturen (Vorlesung)
MfI: Algebraische Strukturen (Übung)

Hier geht es zum OLAT-Kurs:

TUK Mathematik für Informatiker: Algebraische Strukturen WS2023/24


Kontakt

Dr. Janko Böhm

E-Mail: jboehm(at)rptu.de

Inhalte
  • Aussagen, Mengen, Beweismethoden, Abbildungen, Halbordnungen und Äquivalenzrelationen,
  • Ganze Zahlen, Division mit Rest, größter gemeinsamer Teiler und Euklidischer Algorithmus, Chinesischer Restsatz über ℤ,
  • Vektorräume, Gaußalgorithmus, Basen und Dimension, Vektorraumhomomorphismen, Lösen linearer Gleichungssysteme, darstellende Matrix eines Homomorphismus,
  • Determinanten, Eigenvektoren.

Kontaktzeit

2 SWS Vorlesungen
2 SWS Übungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Angebotsturnus

Die Vorlesung ist Teil der Veranstaltung "MfI: Algebraische Strukturen" und umfasst i. d. R. die Vorlesungswochen 1–3 sowie 10–14. Ergänzend wird im Wintersemester ein dediziertes Übungsprogramm (Kleingruppenübungen) für die Studierenden der Sozioinformatik angeboten.

Hier geht es zum KIS-Eintrag:
Mathematik für Sozioinformatik: Lineare Algebra (Vorlesung)
Mathematik für Sozioinformatik: Lineare Algebra (Übung)

Hier geht es zum OLAT-Kurs:

TUK Mathematik für Informatiker: Lineare Algebra WS 2023/24


Kontakt

Dr. Janko Böhm

E-Mail: jboehm(at)rptu.de

Inhalte
  • Ganze und rationale Zahlen, Abzählbarkeit,
  • Folgen, Konvergenz, reelle Zahlen, Dezimalbrüche, Cauchyfolgen, Konvergenzkriterien, Anwendung: Existenz und Berechnung von Quadratwurzeln,
  • Reihen, geometrische Reihe, Konvergenz- und Divergenzkriterien, Cauchyprodukt von Reihen,
  • Funktionen, Stetigkeit, Anwendung: Intervallschachtelung und Existenz von Nullstellen, Zwischenwertsatz,
  • Potenzreihen, Exponentialfunktion und Funktionalgleichung, Sinus und Cosinus,
  • Differenzierbarkeit, Ableitungsregeln, Ableiten von Potenzreihen, Taylorreihe, Extremwerte, Mittelwertsatz, Regel von l’Hospital, Anwendung (z.B. Newtonverfahren),
  • Riemannintegral, Stammfunktionen und Hauptsatz, Integrationsregeln,
  • Umkehrfunktion, Logarithmus, allgemeine Potenzen, Ableitung der Umkehrfunktion, Anwendung: Laufzeitanalyse von Algorithmen,
  • Ausblick auf Ideen und Konzepte der multivariaten Analysis: Grenzwerte und Stetigkeit in mehreren Variablen, Kurven im Rn, partielle Ableitungen, Gradient und Hesse-Matrix, Taylor-Formel und lokale Extrema, Anwendungen( z.B. Geometrische Modellierung)

Kontaktzeit

2 SWS Vorlesungen
2 SWS Übungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Mi. 28.02.2024


Angebotsturnus

Die Veranstaltung findet jedes Semester statt.

Hier geht es zum KIS-Eintrag:
MfI: Analysis (Vorlesung)
MfI: Analysis (Übung)

Hier geht es zum OLAT-Kurs:

TUK Mathematik für Informatiker: Analysis WS2023/24


Kontakt

Dr. Janko Böhm

E-Mail: jboehm(at)rptu.de

Inhalte
  • Vektoralgebra
  • Komplexe Zahlen
  • Vektorfunktionen
  • Funktionen in mehreren Variablen
  • Partielle Ableitungen
  • Die totale Ableitung
  • Extrema bei Funktionen in mehreren Variablen
  • Extrema unter Nebenbedingungen
  • Kurvenintegrale erster und zweiter Art
  • Gradientenfelder

Kontaktzeit

2 SWS Vorlesungen
1 SWS Übungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

1. Klausurtermin: Mi. 20.03.2024
2. Klausurtermin: Di. 02.04.2024


Angebotsturnus

Die Vorlesung wird jedes Jahr im Wintersemester angeboten.

Hier geht es zum KIS-Eintrag:
Mathematik 1 für Biophysiker (Vorlesung)
Mathematik 1 für Biophysiker (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Mathematik 1 für Biophysiker*innen WS 2023/24


Kontakt

Dr. Torben Fattler

E-Mail: torben.fattler(at)math.rptu.de

Inhalte
  • Komplexe Zahlen
  • Vektoren
  • Vektorfunktionen
  • Funktionen mit mehreren Variablen
  • partielle Ableitungen
  • die totale Ableitung
  • Maxima und Minima für Funktionen von mehreren Veränderlichen
  • das Riemann Integral
  • das uneigentliche Integral
  • Vektorfelder
  • Kurvenintegral

Kontaktzeit

3 SWS Vorlesungen
1 SWS Übungen


Inhaltliche Voraussetzungen

Zur Auffrischung der Kenntnisse in Schulmathematik wird der Besuch eines Studien-Vorkurses in Mathematik empfohlen.


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Di. 05.03.2024


Angebotsturnus

Die Vorlesung wird in jedem Semester angeboten.

Hier geht es zum KIS-Eintrag:
Mathematik 1 für Chemiker*innen (Vorlesung)
Mathematik 1 für Chemiker*innen (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Mathematik 1 für Chemiker*innen WS 2023/24


Kontakt

Dr. Torben Fattler

E-Mail: torben.fattler(at)math.rptu.de

Inhalte
  • Lineare Algebra
  • Zweifachintegration
  • Dreifachintegration
  • Der Transformationssatz
  • Potenzreihen
  • Gewöhnliche Differentialgleichungen
  • Differentialgleichungssysteme
  • Partielle Differentialgleichungen

Kontaktzeit

3 SWS Vorlesungen
1 SWS Übungen


Inhaltliche Voraussetzungen

Lehrveranstaltung "Mathematik 1 für Chemiker*innen" aus dem Bachelorstudiengang Chemie


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Mi. 06.03.2024


Angebotsturnus

Die Vorlesung wird in jedem Semester angeboten.

Hier geht es zum KIS-Eintrag:
Mathematik 2 für Chemiker*innen (Vorlesung)
Mathematik 2 für Chemiker*innen (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Mathematik 2 für Chemiker*innen WS 2023/24


Kontakt

Dr. Torben Fattler

E-Mail: torben.fattler(at)math.rptu.de

Inhalte

Anhand eines ausgewählten Themas wird exemplarisch eine Problemstellung aus der Biologie mit Hilfe der Statistik und eines statistischen Programms gelöst. Das bedeutet, dass nach einer Einführung in ein statistisches Programm und der Vorstellung der Daten und des Problems, die Studierenden weitgehend selbstständig die Arbeit durchführen. Vorträge und ein abschließendes Protokoll sind wichtige Teile des Moduls.

Kontaktzeit

10 Stunden


Inhaltliche Voraussetzungen

Mathematik/Biostatistik 1 und Mathematik/Biostatistik 2


Anmeldung

Bitte melden Sie sich bis zum 31. Oktober 2023 bei Dr. Jean-Pierre Stockis an.


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester statt.

Hier geht es zum KIS-Eintrag:
Praktikum Statistische Auswertung biologischer Daten

Hier geht es zum OLAT-Kurs:

RPTU Praktikum Statistische Auswertung Biologischer Daten Winter 23/24


Kontakt

Dr. Jean-Pierre Stockis

E-Mail: jp.stockis(at)rptu.de

Inhalte
  • Differential- und Integralrechnung einer Veränderlichen
  • Grundlagen der Wahrscheinlichkeitsrechnung

Kontaktzeit

1 SWS Vorlesungen
1 SWS Hörsaalübungen
2 SWS Präsenzübungen


Inhaltliche Voraussetzungen

keine


Anmeldung zu Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Mo. 12.02.2024
Hinweise zur Klausur


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester statt.

Hier geht es zum KIS-Eintrag:
Mathematik/Biostatistik 1 (Vorlesung)
Mathematik/Biostatistik 1 (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Mathematik/Biostatistik 1 Winter 23/24


Kontakt

Dr. Jean-Pierre Stockis

E-Mail: jp.stockis(at)rptu.de

Inhalte
  • Einführung in die Wahrscheinlichkeitsrechnung
  • Markow-Ketten zur Darstellung psychologischer Prozesse
  • Eigenschaften von Markow-Ketten mit diskretem Zustandsraum

Kontaktzeit

2 SWS Vorlesungen


Inhaltliche Voraussetzungen

keine


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester statt.

Hier geht es zum KIS-Eintrag:
Introduction to Stochastic Modelling of Cognitive Processes

Hier geht es zum OLAT-Kurs:

RPTU Introduction to Stochastic Modelling of Cognitive Processes WS2023/2024


Kontakt

Dr. Sonja Föhst

E-Mail: foehst(at)rptu.de

Inhalte
  • Lineare Algebra: Vektoren und Matrizen, lineare Gleichungssysteme, Eigenwerte und Eigenvektoren, Ebenen und Hyperebenen.
  • Differential- und Integralrechnung: Differentialrechnung im eindimensionalen und mehrdimensionalen Raum, Lagrange, Anwendungen der Differentialrechnung, Integralrechnung im eindimensionalen Raum, Differentialgleichungen erster Ordnung.
  • Lineare Optimierung: lineare Programme, graphisches Lösungverfahren linearer Programmen.

Kontaktzeit

4 SWS Vorlesungen
2 SWS Hörsaalübung
2 SWS Tutorien


Inhaltliche Voraussetzungen

keine


Anmeldung zu den Übungen

https://urm.mathematik.uni-kl.de


Info zu Klausuren

Klausurtermin: Di. 23.07.2024
Hinweise zur Klausur


Angebotsturnus

Die Veranstaltung findet jedes Wintersemester statt.

Hier geht es zum KIS-Eintrag:
Mathematik für Wirtschaftswissenschaftler (Vorlesung)
Mathematik für Wirtschaftswissenschaftler (Übung)

Hier geht es zum OLAT-Kurs:

RPTU Mathematik für Wirtschaftswissenschaftler Winter 23/24


Kontakt

Dr. Jean-Pierre Stockis

E-Mail: jp.stockis(at)rptu.de

(Nach)Klausuren

Hier finden Sie Informationen zu Wiederholungsprüfungen ohne Lehrveranstaltung im Wintersemester:

Sommersemester

Hier finden Sie das Lehrangebot im Sommersemester für Studierende anderer Fachbereiche.