AG Optimierung

Prof. Dr. Anita Schöbel

Anschrift

Gottlieb-Daimler-Straße
Gebäude 48 , Raum 529
67663 Kaiserslautern

Postfach 3049
67653 Kaiserslautern

Kontakt

Tel.: +49 631 205 5048
Fax: +49 631 205 2748
E-Mail: schoebel@mathematik.uni-kl.de

Neben meiner Professur an der RPTU leite ich auch das Fraunhofer-Institut für Techno- und Wirtschaftsmathematik (ITWM) in Kaiserslautern. Meine Webseite am ITWM finden sie hier.

Curriculum Vitae

  • 1988-1994: Studium der Mathematik mit Nebenfach Wirtschaftswissenschaften an der Universität Kaiserslautern
     
  • 1994: Diplom in Mathematik
    Abschlussarbeit: Kombinatorische Optimierung in der Tarifplanung im ÖPNV
    Betreuer: Horst Hamacher

     
  • 1994-1998: wissenschaftliche Mitarbeiterin am Fachbereich Mathematik der TU Kaiserslautern
     
  • 1998: Promotion (Dr.rer.nat), TU Kaiserslautern     
    Thesis: Locating Lines and Hyperplanes - Theory and Algorithms (erschienen bei Kluwer, 1999)
     
  • 1998-1999: Schwerpunktleiterin des Bereichs Verkehr am Institut für Techno- und Wirtschaftsmathematik (wegen Kinderbetreuung halbtags)
     
  • 1999-2004: Wissenschaftliche Hochschulassistentin (C1) am Fachbereich Mathematik der TU Kaiserslautern (wegen Kinderbetreuung halbtags)      
     
  • 2003: Habilitation     
    Thesis: Customer-oriented Optimization in Public Transportation, (erschienen bei Springer, 2006)
     
  • 2004-2018: Professorin am Institut für Numerische und Angewandte Mathematik an der Georg-August Universität Göttingen    
     
  • 2008/09: Gastwissenschaftlerin an der University of Auckland, Neuseeland
     
  • seit 2019: Professorin im Fachbereich Mathematik an der Rheinland-Pfälzischen Technischen Universität Kaiserslautern-Landau (RPTU) und Leiterin des Fraunhofer-Instituts für Techno- und Wirtschaftsmathematik (ITWM)

Meine Website am ITWM

Forschungsinteressen

Meine Forschungsinteressen beinhalten unter anderem

  • Ganzzahlige Optimierung
  • Robuste Optimierung
  • Optimierung des Öffentlichen Verkehrs
  • geometrische Optimierungsverfahren
  • Standortplanung

Veröffentlichungen

  • The price of multiobjective robustness: Analyzing solution sets to uncertain multiobjective problems
    A. Schöbel, Y. Zhou-Kangas,
    EJOR 291, pp. 782-793 (2021)

  • When closest ist not always the best: The distributed p-median problem
    J. Brimberg, A. Maier, A. Schöbel,
    JORS 72, pp. 200-216 (2021)

  • Generating Valid Inequalities for Nonlinear Programs via Sums of Squares
    S. Behrends, A. Schöbel,
    Journal of Optimization Theory and Applications 186, pp. 911-935 (2020)

  • The blockwise coordinate descent method for integer programs
    S. Jäger, A. Schöbel,
    Mathematical Methods of Operations Research 91, pp. 357-381 (2020)

  • The foreshadow of a second wave: Surpassing the contact tracing capacity risks the mitigation of COVID-19
    M. Linden, J. Dehning, S B. Mohr, J. Mohring, M. Meyer-Hermann, I. Pigeot, A. Schöbel, V. Priesemann,
    Deutsches Ärzteblatt 117, pp. 790-791 (2020)

  • Approximate Cutting Plane Approaches for Exact Solutions to Robust Optimization Problems
    J. Pätzold, A. Schöbel,
    European Journal of Operational Research 284, pp. 20-30 (2020)

  • Periodic Timetabling with Integrated Routing: Toward Applicable Approaches
    P. Schiewe, A. Schöbel,
    Transportation Science 54, pp. 1714-1731 (2020)

  • On the p-hub interdiction problem
    T. Ullmert, S. Ruzika, A. Schöbel,
    Computers & Operations Research 124, pp. 105056 (2020)

  • Dominance for Multi-Objective Robust Optimization Concepts
    M. Botte, A. Schöbel,
    European Journal of Operational Research 273, pp. 430-440 (2019)

  • Min-ordering and max-ordering scalarization methods for multi-objective robust optimization
    M. Schmidt, A. Schöbel, L. Thom,
    European Journal of Operational Research 275, pp. 446-459 (2019)

  • The Weber obnoxious facility location model: A Big Arc Small Arc approach
    T. Drezner, Z. Drezner, A. Schöbel,
    Computers and Operations Research 98, pp. 240-250 (2018)

  • Peat and Pots: An application of robust multiobjective optimization to a mixing problem in agriculture
    C. Krüger, F. Castellani, J. Geldermann, A. Schöbel,
    Computers and Electronics in Agriculture 154, pp. 265-275 (2018)

  • Multi-objective minmax robust combinatorial optimization with cardinality-constrained uncertainty
    A. Raith, M. Schmidt, A. Schöbel, L. Thom,
    European Journal of Operational Research 267, pp. 628-642 (2018)

  • Extensions of Labeling Algorithms for Multi-objective Uncertain Shortest Path Problems
    A. Raith, M. Schmidt, A. Schöbel, L. Thom,
    Networks 72, pp. 84-127 (2018)

  • Norm Bounds and Underestimators for Unconstrained Polynomial Integer Minimization
    S. Behrends, R. Hübner, A. Schöbel,
    Mathematical Methods of Operations Research 87, pp. 73-107 (2018)

  • A biobjective approach to recovery robustness based on location planning
    E. Carrizosa, M. Goerigk, A. Schöbel,
    European Journal of Operational Research 261, pp. 421-435 (2017)

  • A unified approach to uncertain optimization
    K. Klamroth, E. Köbis, A. Schöbel, C. Tammer,
    European Journal of Operational Research 260, pp. 403-420 (2017)

  • A general approach for the location of transfer points on a network with a trip covering criterion and mixed distances
    M C. López-de-los-Mozos, J A. Mesa, A. Schöbel,
    European Journal of Operational Research 260, pp. 108-121 (2017)

  • Decision uncertainty in multiobjective optimization
    G. Eichfelder, C. Krüger, A. Schöbel,
    Journal of Global Optimization 69, pp. 485-510 (2017)

  • The Traveler's Route Choice Problem under Uncertainty: Dominance Relations between Strategies
    M. Schmidt, L. Kroon, A. Schöbel, P. Bouman,
    Operations Research 65, pp. 184-199 (2017)

  • Source Estimation for Propagation Processes on Complex Networks with an Application to Delays in Public Transportation Systems
    J. Manitz, J. Harbering, M. Schmidt, T. Kneib, A. Schöbel,
    Journal of the Royal Statistical Society: Series C 66, pp. 521-536 (2017)

  • An Eigenmodel for Iterative Line Planning, Timetabling and Vehicle Scheduling in Public Transportation
    A. Schöbel,
    Transportation Research C 74, pp. 348-365 (2017)

  • Line Pool Generation
    P. Gattermann, J. Harbering, A. Schöbel,
    Public Transport 9, pp. 7-32 (2017)

  • Minimizing the passengers' traveling time in the stop location problem
    E. Carrizosa, J. Harbering, A. Schöbel,
    Journal of the Operational Research Society 67, pp. 1325-1337 (2016)

  • Robustness for uncertain multi-objective optimization: A survey and analysis of different concepts
    J. Ide, A. Schöbel,
    OR Spectrum 38, pp. 235-271 (2016)

  • Bi-objective robust optimisation
    K. Kuhn, A. Raith, M. Schmidt, A. Schöbel,
    European Journal of Operational Research 252, pp. 418-431 (2016)

  • Algorithmic Methods for Optimization in Public Transport (Dagstuhl Seminar 16171)
    L. G. Kroon, A. Schöbel, D. Wagner,
    Dagstuhl Reports 6, pp. 139-160 (2016)

  • Timetabling with Passenger Routing
    M. Schmidt, A. Schöbel,
    OR Spectrum 37, pp. 75-97 (2015)

  • Ellipsoid bounds for convex quadratic integer programming
    C. Buchheim, R. Hübner, A. Schöbel,
    SIAM journal on optimization 25, pp. 741-769 (2015)

  • Selecting vertex disjoint paths in plane graphs
    H. Flier, M. Mihalak, P. Widmayer, A. Zych, Y. Kobayashi, A. Schöbel,
    Networks 66, pp. 136-144 (2015)

  • The Robust Knapsack Problem with Queries
    M. Goerigk, M. Gupta, J. Ide, A. Schöbel, S. Sen,
    Computers and Operations Research 55, pp. 12-22 (2015)

  • The complexity of integrating routing decisions in public transportation models
    M. Schmidt, A. Schöbel,
    Networks 65, pp. 228-243 (2015)

  • Delay Management including capacities of stations
    T. Dollevoet, D. Huisman, L. Kroon, M. Schmidt, A. Schöbel,
    Transportation Science 49, pp. 185-203 (2015)

  • On Models for Continuous Facility Location with Partial Coverage
    J. Brimberg, H. Juel, M -C. Körner, A. Schöbel,
    Journal of the Operational Research Society 66, pp. 33-43 (2015)

  • Locating a median line with partial coverage distance
    J. Brimberg, R. Schieweck, A. Schöbel,
    Journal of Global Optimization 62, pp. 371-389 (2015)

  • Recovery-to-Optimality: A new two-stage approach to robustness with an application to aperiodic timetabling
    M. Goerigk, A. Schöbel,
    Computers and Operations Research 52, pp. 1-15 (2014)

  • Recovery-to-optimality: A new two-stage approach to robustness with an application to aperiodic timetabling
    M. Goerigk, A. Schöbel,
    Computers & Operations Research 52, pp. 1-15 (2014)

  • Robust load planning of trains in intermodal transportation
    F. Bruns, M. Goerigk, S. Knust, A. Schöbel,
    OR Spectrum 36, pp. 631-668 (2014)

  • The Price of Strict and Light Robustness in Timetable Information
    M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, A. Schöbel,
    Transportation Science 48, pp. 225-242 (2014)

  • Locating an axis-parallel rectangle on a Manhattan plane
    J. Brimberg, H. Juel, M -C. Körner, A. Schöbel,
    TOP 22, pp. 185-207 (2014)

  • Robust load planning of trains in intermodal transportation
    F. Bruns, M. Goerigk, S. Knust, A. Schöbel,
    OR spectrum 36, pp. 631-668 (2014)

  • A solution algorithm for non-convex mixed integer optimization problems with only few continuous variables
    A. Schöbel, D. Scholz,
    European Journal of Operational Research 232, pp. 266-275 (2014)

  • Location of speed-up networks
    M. Schmidt, A. Schöbel,
    Annals of Operations Research 223, pp. 379-401 (2014)

  • Generalized light robustness and the trade-off between robustness and nominal quality
    A. Schöbel,
    MMOR 80, pp. 161-191 (2014)

  • Minmax Robustness for Multi-objective Optimization Problems
    M. Ehrgott, J. Ide, A. Schöbel,
    European Journal of Operational Research 239, pp. 17-31 (2014)

  • When is rounding allowed in integer nonlinear optimization?
    R. Hübner, A. Schöbel,
    European Journal of Operational Research 237, pp. 404-410 (2014)

  • A Maximum Trip Covering Location Problem with an Alternative Mode of Transportation on Tree Networks and Segments
    M -C. Körner, J A. Mesa, F. Perea, A. Schöbel, D. Scholz,
    TOP 22, pp. 227-253 (2014)

  • Rules of Thumb - Practical online strategies for delay management
    R. Bauer, A. Schöbel,
    Public Transport 6, pp. 85-105 (2014)

  • The relationship between multi-objective robustness concepts and set valued optimization
    J. Ide, E. Köbis, D. Kuroiwa, A. Schöbel, C. Tammer,
    Fixed Point Theory and Applications 2014 (2014)

  • Evaluating Line Concepts using Travel Times and Robustness: Simulations with the Lintim toolbox
    M. Goerigk, M. Schachtebeck, A. Schöbel,
    Public Transport 5 (2013)

  • Twins of powerful numbers
    V. Blomer, A. Schöbel,
    Functiones et Approximatio Commentarii Mathematici 49, pp. 349-356 (2013)

  • Improving the Modulo Simplex Algorithm for Large-Scale Periodic Timetabling
    M. Goerigk, A. Schöbel,
    Computers and Operations Research 40, pp. 1363-1370 (2013)

  • The price of strict and light robustness in timetable information
    M. Goerigk, M. Schmidt, A. Schöbel, M. Knoth, M. Müller-Hannemann,
    Transportation Science 48, pp. 225-242 (2013)

  • A unified approach for different concepts of robustness and stochastic programming via nonlinear scalarizing functionals
    K. Klamroth, E. Köbis, A. Schöbel, C. Tammer,
    Optimization 62, pp. 649-671 (2013)

  • Finding Delay-Resistant Line Concepts using a Game-Theoretic Approach
    A. Schöbel, S. Schwarze,
    Netnomics 14, pp. 95-117 (2013)

  • Evaluating line concepts using travel times and robustness
    M. Goerigk, M. Schachtebeck, A. Schöbel,
    Public Transport 5, pp. 267-284 (2013)

  • Improving the modulo simplex algorithm for large-scale periodic timetabling
    M. Goerigk, A. Schöbel,
    Computers & Operations Research 40, pp. 1363-1370 (2013)

  • Delay Management with Rerouting of Passengers
    T. Dollevoet, D. Huisman, M. Schmidt, A. Schöbel,
    Transportation Science 46, pp. 74-89 (2012)

  • Minisum Hyperspheres in Normed Spaces
    M -C. Körner, H. Martini, A. Schöbel,
    Discrete Applied Mathematics 16, pp. 2221-2233 (2012)

  • Line planning in public transportation: models and methods
    A. Schöbel,
    OR Spectrum 34, pp. 491-510 (2012)

  • Multi-Stage Recovery Robustness for Optimization Problems: A new Concept for Planning under Disturbances
    S. Cicerone, D. G. Stefano, M. Schachtebeck, A. Schöbel,
    Information Sciences 190, pp. 107-126 (2012)

  • Location of a line in the three-dimensional space
    R. Blanquero, E. Carrizosa, A. Schöbel, D. Scholz,
    EJOR 215, pp. 14-20 (2011)

  • An Approximation Algorithm for Convex Multi-objective Programming Problems
    S. L. M. Ehrgott, A. Schöbel,
    Journal of Global Optimization, pp. 397-516 (2011)

  • Locating a general minisum circle on the plane
    J. Brimberg, H. Juel, M -C. Körner, A. Schöbel,
    4OR 9, pp. 351-370 (2011)

  • On the similarities of some Multi-Ciriteria Decision Analysis Methods
    J. Geldermann, A. Schöbel,
    Multi-criteria decision analysis 18, pp. 219-230 (2011)

  • Geometric fit of a point set by generalized circles
    M -C. Körner, J. Brimberg, H. Juel, A. Schöbel,
    Journal of Global Optimization 51, pp. 115-132 (2011)

  • Computing delay-resistant railway timetables
    C. Liebchen, M. Schachtebeck, A. Schöbel, S. Stiller, A. Prigge,
    Computers and Operations Research 37, pp. 857-868 (2010)

  • The Big Cube Small Cube solution method for multidimensional facility location problems
    A. Schöbel, D. Scholz,
    Computers and Operations Research 37, pp. 115-122 (2010)

  • Weber problems with highway distances
    M -C. Körner, A. Schöbel,
    TOP 18, pp. 223-241 (2010)

  • To wait or not to wait and who goes first? Delay Management with Priority Decisions
    M. Schachtebeck, A. Schöbel,
    Transportation Science 44, pp. 307-321 (2010)

  • The theoretical and empirical rate of convergence for geometric branch-and-bound methods
    D. Scholz, A. Schöbel,
    Journal of Global Optimization 48, pp. 473-495 (2010)

  • Locating a minisum circle in the plane
    J. Brimberg, H. Juel, A. Schöbel,
    Discrete Applied Mathematics 157, pp. 901-912 (2009)

  • Locating a circle on the plane using the minimax criterion
    J. Brimberg, H. Juel, A. Schöbel,
    Studies in Locational Analysis 17, pp. 46-60 (2009)

  • Stop location design in public transportation networks: covering and accessibility objectives
    D. Groß, H. W. Hamacher, S. Horn, A. Schöbel,
    Top 17, pp. 335 (2009)

  • Stop Location Design in Public Transportation Networks: Covering and Accessibility Objectives
    D. Poetranto, H W. Hamacher, S. Horn, A. Schöbel,
    TOP 17, pp. 335-346 (2009)

  • Integrating Line Planning, Timetabling, and Vehicle Scheduling: A customer-oriented approach
    M. Michaelis, A. Schöbel,
    Public Transport 1, pp. 211-232 (2009)

  • The continuous stop location problem in public transportation networks
    A. Schöbel, H. W. Hamacher, A. Liebers, D. Wagner,
    Asia-Pacific Journal of Operational Research 26, pp. 13-30 (2009)

  • The continuous stop location problem in public transportation
    A. Schöbel, H W. Hamacher, A. Liebers, D. Wagner,
    Asia-Pacific Journal of Operational Research 26, pp. 13-30 (2009)

  • Capacity constraints in delay management
    A. Schöbel,
    Public Transport 1, pp. 135-154 (2009)

  • The path player game: A network game from the point of view of the network providers
    J. Puerto, A. Schöbel, S. Schwarze,
    Mathematical Methods of Operations Research 68, pp. 1-20 (2008)

  • Locating a circle on a sphere
    J. Brimberg, H. Juel, A. Schöbel,
    Operations Research 55, pp. 782-791 (2007)

  • To wait or not to wait? The bicriteria delay management problem in public transportation
    A. Ginkel, A. Schöbel,
    Transportation Science 41, pp. 527-538 (2007)

  • Locating stops along bus or railway lines - a bicriteria problem
    A. Schöbel,
    Annals of Operations Research 136, pp. 211-227 (2005)

  • DisKon - Laborversion eines flexiblen, modularen und automatischen Dispositionsassistenzsystems
    N. Bissantz, S. Güttler, J. Jacobs, S. Kuy, T. Schaer, A. Schöbel, S. Scholl,
    Eisenbahntechnische Rundschau (ETR) 45, pp. 809-821 (2005)

  • Continuous Location of Dimensional Structures
    D. J M. a, J A. Mesa, A. Schöbel,
    European Journal of Operational Research 152, pp. 22-44 (2004)

  • Design of Zone Tariff Systems in Public Transportation
    H W. Hamacher, A. Schöbel,
    OR 52, pp. 897-908 (2004)

  • Design of zone tariff systems in public transportation
    H. W. Hamacher, A. Schöbel,
    Operations Research 52, pp. 897-908 (2004)

  • Set covering problems with almost consecutive ones property
    N. Ruf, A. Schöbel,
    Discrete Optimization 1, pp. 215-228 (2004)

  • Properties of 3-dimensional line location models
    J. Brimberg, H. Juel, A. Schöbel,
    Annals of Operations Research 122, pp. 71-85 (2003)

  • On center cycles in grid graphs
    L. Foulds, H W. Hamacher, A. Schöbel, T. Yamaguchi,
    Annals of Operations Research 122, pp. 163-175 (2003)

  • On center cycles in grid graphs
    L. R. Foulds, H. W. Hamacher, A. Schöbel, T. Yamaguchi,
    Annals of Operations Research 122, pp. 163-175 (2003)

  • Anchored hyperplane location problems
    A. Schöbel,
    Discrete & Computational Geometry 29, pp. 229-238 (2003)

  • Linear Facility Location in Three Dimensions - Models and Solution Methods
    J. Brimberg, H. Juel, A. Schöbel,
    Operations Research 50, pp. 1050-1057 (2002)

  • Locating new stops in a railway network
    H W. Hamacher, A. Liebers, A. Schöbel, D. Wagner, F. Wagner,
    Electronic Notes in Theoretical Computer Science 50 (2001)

  • Median and Center hyperplanes in Minkowski spaces - a unifying approach
    H. Martini, A. Schöbel,
    Discrete Mathematics 241, pp. 407-426 (2001)

  • A Model for the Delay Management Problem based on Mixed-Integer Programming
    A. Schöbel,
    Electronic Notes in Theoretical Computer Science 50 (2001)

  • A characterization of smooth norms
    H. Martini, A. Schöbel,
    Geometriae Dedicata 77, pp. 173-183 (1999)

  • Hyperplane transversals of homothetical, centrally symmetric polytopes
    H. Martini, A. Schöbel,
    Periodica Mathematica Hungaria 39, pp. 73-81 (1999)

  • A geometric approach to global optimization
    S. Nickel, A. Schöbel,
    Journal of Global Optimization 15, pp. 109-126 (1999)

  • Solving restricted line location problems via a dual interpretation
    A. Schöbel,
    Discrete Applied Mathematics 93, pp. 109-125 (1999)

  • Median hyperplanes in normed spaces - a survey
    H. Martini, A. Schöbel,
    Discrete Applied Mathematics 89, pp. 181-195 (1998)

  • Locating least distant lines in the plane
    A. Schöbel,
    European Journal of Operational Research 106, pp. 152-159 (1998)

  • A Note on Center Problems with forbidden Polyhedra
    H W. Hamacher, A. Schöbel,
    ORL 20, pp. 165-169 (1997)

  • Equivalence of balance points and Pareto solutions in multiple-objective programming
    M. Ehrgott, H. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, M. Wiecek,
    Journal of Optimization Theory and Applications 92, pp. 209-212 (1997)

  • A note on center problems with forbidden polyhedra
    H. W. Hamacher, A. Schöbel,
    Operations research letters 20, pp. 165-169 (1997)

  • Locating line segments with vertical distances
    A. Schöbel,
    Studies in Locational Analysis 11, pp. 143-158 (1997)

  • A Note on the Equivalence of Balance Points and Pareto Solutions in Multiple-Objective Programming
    M. Ehrgott, H W. Hamacher, K. Klamroth, S. Nickel, A. Schöbel, M M. Wiecek,
    JOTA 92, pp. 209-212 (1997)

  • Locating least-distant lines with block norms
    A. Schöbel,
    Studies in Locational Analysis 10, pp. 139-150 (1996)

  • Locating Dimensional Facilities in a Continuous Space
    A. Schöbel,
    Location Science, Springer, pp. 143-184 (2020)

  • Integer Location problems
    A. Schöbel,
    Contributions to Location Analysis, pp. 125-145 (2019)

  • Delay propagation and delay management in transportation networks
    T. Dollevoet, D. Huisman, M. Schmidt, A. Schöbel,
    Handbook of Optimization in the Railway Industry, Springer (2018)

  • Passenger-induced delay propagation: Agent-based simulation of passengers in rail networks
    S. Albert, P. Kraus, J P. Müller, A. Schöbel,
    Simulation Science 889, Springer, pp. 3-23 (2018)

  • Ressourceneffizienz in Unternehmensnetzwerken - Methoden zur betrieblichen und überbetrieblichen Planung für die Nutzung erneuerbarer Rohstoffe
    J. Geldermann, L. Kolbe, A. Schöbel, M. Schumann,
    Nachhaltiges Entscheiden, Springer (2016)

  • Algorithm Engineering in Robust Optimization
    M. Goerigk, A. Schöbel,
    Algorithm Engineering: Selected Results and Surveys 9220, pp. 245-279 (2016)

  • Location of Dimensional Facilities in a Continuous Space
    A. Schöbel,
    Location Science, Springer, pp. 63-103 (2015)

  • Evolution und Epidemie - Spieltheorie in der Biophysik
    A. Schöbel, S. D. (Eds.),
    Shaker, (2010)

  • A bicriteria approach for robust timetabling
    A. Schöbel, A. Kratz,
    Robust and online large-scale optimization 5868, Springer, pp. 119-144 (2009)

  • Recoverable robustness in shunting and timetabling
    S. Cicerone, G . D'Angelo, D. G. Stefano, D. Frigioni, A. Navarra, M. Schachtebeck, A. Schöbel,
    Robust and online large-scale optimization 5868, Springer, pp. 28-60 (2009)

  • Algorithmic Methods for Railway Optimization
    F. Geraets, L. Kroon, A. Schöbel, D. Wagner, Z. C. (Eds.),
    Springer, 4359 (2007)

  • Integer Programming approaches for solving the delay management problem
    A. Schöbel,
    Algorithmic Methods for Railway Optimization 4359, Springer, pp. 145-170 (2007)

  • Optimization in public transportation. Stop location, delay management and tariff planning from a customer-oriented point of view
    A. Schöbel,
    Springer, (2006)

  • The Weber Problem
    Z. Drezner, K. Klamroth, A. Schöbel, G. Wesolowsky,
    Facility Location - Applications and Theory, Springer, pp. 1-36 (2002)

  • Hub Location Problems in Urban Traffic Networks
    S. Nickel, A. Schöbel, T. Sonneborn,
    Mathematical Methods and Optimization in Transportation Systems, KLUWER academic publishers, pp. 95-107 (2000)

  • Locating Lines and Hyperplanes - Theory and Algorithms
    A. Schöbel,
    Kluwer, 25 (1999)

  • Zone Planning in Public Transportation
    A. Schöbel,
    Advanced Methods in Transportation Analysis, Springer Verlag, pp. 117-134 (1996)

  • On fair zone designs in public transportation
    H. W. Hamacher, A. Schöbel,
    Computer-Aided Transit Scheduling, Springer, pp. 8-22 (1995)

  • Kosten oder Reisezeit? Bikriterielle Optimierung der integrierten Fahr- und Umlaufplanung
    P. Schiewe, A. Schöbel, S. Ruzika,
    Preprint Heureka'21 (2020)

  • Cheapest Paths in Public Transport: Properties and Algorithms
    A. Schöbel, R. Urban,
    20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020), OpenAccess Series in Informatics (OASIcs) (85), pp. 13:1-13:16 (2020)

  • Cheapest Paths in Public Transport: Properties and Algorithms
    A. Schöbel, R. Urban,
    20th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2020), OpenAccess Series in Informatics (OASIcs) (85), pp. 13:1-13:16 (2020)

  • The Trickle-In Effect: Modeling Passenger Behavior in Delay Management
    A. Schöbel, J. Pätzold, J P. Müller,
    19th Symposium on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2019), OpenAccess Series in Informatics (OASIcs) (75), pp. 6:1-6:15 (2019)

  • System Headways in Line Planning
    M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel,
    Proceedings of CASPT 2018 (2018)

  • Integrating line planning, timetabling and vehicle scheduling - Integer programming formulation and analysis
    M E. Lübbecke, C. Puchert, P. Schiewe, A. Schöbel,
    Proceedings of CASPT 2018 (2018)

  • Robustness as a Third Dimension for Evaluating Public Transport Plans
    M. Friedrich, M . Müller-Hannemann, R. Rückert, A. Schiewe, A. Schöbel,
    18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), OpenAccess Series in Informatics (OASIcs) (65), pp. 4:1-4:17 (2018)

  • Cost-Minimal Public Transport Planning
    J. Pätzold, A. Schiewe, A. Schöbel,
    18th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2018), OpenAccess Series in Informatics (OASIcs) (65), pp. 8:1-8:22 (2018)

  • Angebotsplanung im öffentlichen Verkehr - planerische und algorithmische Lösungen
    M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel,
    Heureka'17 (2017)

  • Integrating Passengers' Assignment in Cost-Optimal Line Planning
    M. Friedrich, M. Hartl, A. Schiewe, A. Schöbel,
    17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs) (59), pp. 1-16 (2017)

  • Robustness Tests for Public Transport Planning
    M. Friedrich, M. Müller-Hannemann, R. Rückert, A. Schiewe, A. Schöbel,
    17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs) (59), pp. 1-16 (2017)

  • Look-Ahead Approaches for Integrated Planning in Public Transportation
    J. Pätzold, A. Schiewe, P. Schiewe, A. Schöbel,
    17th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2017), OpenAccess Series in Informatics (OASIcs) (59), pp. 1-16 (2017)

  • An Iterative Approach for Integrated Planning in Public Transportation
    P. Gattermann, A. Schiewe, A. Schöbel,
    9th Triennial Symposium on Transportation Analysis (2016)

  • A Matching Approach for Line Planning
    A. Schiewe, A. Schöbel,
    9th Triennial Symposium on Transportation Analysis (2016)

  • Integrating Passengers' Routes in Periodic Timetabling: A SAT approach
    P. Gattermann, P. Großmann, K. Nachtigall, A. Schöbel,
    16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs) (54), pp. 1-15 (2016)

  • A Matching Approach for Periodic Timetabling
    J. Pätzold, A. Schöbel,
    16th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems (ATMOS 2016), OpenAccess Series in Informatics (OASIcs) (54), pp. 1-15 (2016)

  • Integration of line planning and timetabling
    A. Schöbel,
    CASPT 2015 (2015)

  • Competitive Analysis for Multi-Objective Online Algorithms
    M. Tiedemann, J. Ide, A. Schöbel,
    Proceedings of the 9th International Workshop on Algorithms and Computation WALCOM 2015, pp. 210-221 (2015)

  • Approximation Algorithms for the Weight-Reducible Knapsack Problem
    M. Goerigk, Y. Sabharwal, A. Schöbel, S. Sen,
    Proceedings of TAMC (2014)

  • Passenger Route Choice in Case of Disruptions
    P. Bouman, M. Schmidt, L. Kroon, A. Schöbel,
    Proceedings of the 16th International IEEE Conference on Intelligent Transport Systems (IEEE-ITSC) (2013)

  • Recoverable robust timetable information
    M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, A. Schöbel,
    ATMOS-13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems-2013 (33), pp. 1-14 (2013)

  • The Stop Location Problem with Realistic Traveling Time
    E. Carrizosa, J. Harbering, A. Schöbel,
    13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs) (33), pp. 80-93 (2013)

  • Recoverable Robust Timetable Information
    M. Goerigk, S. Heße, M. Müller-Hannemann, M. Schmidt, A. Schöbel,
    13th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs) (33), pp. 1-14 (2013)

  • A Scenario-Based Approach for Robust Linear Optimization
    M. Goerigk, A. Schöbel,
    Proceedings of the 1st International ICST Conference on Practice and Theory of Algorithms in (Computer) Systems (TAPAS), Lecture Notes in Computer Science, pp. 139-150 (2011)

  • Engineering the Modulo Network Simplex Heuristic for the Periodic Timetabling Problem
    M. Goerigk, A. Schöbel,
    Proceedings of the 10th International Symposium on Experimental Algorithms (SEA), Lecture Notes in Computer Science (6630), pp. 181-192 (2011)

  • The Price of Robustness in Timetable Information
    M. Goerigk, M. Knoth, M. Müller-Hannemann, M. Schmidt, A. Schöbel,
    11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs) (20), pp. 76-87 (2011)

  • Delay Management including Capacities of Stations
    T. Dollevoet, M. Schmidt, A. Schöbel,
    11th Workshop on Algorithmic Approaches for Transportation Modelling, Optimization, and Systems, OpenAccess Series in Informatics (OASIcs) (20), pp. 88-99 (2011)

  • Vertex Disjoint Paths for Dispatching in Railways
    H. Flier, M. M. a, A. Schöbel, P. Widmayer, A. Zych,
    Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs) (14), pp. 61-73 (2010)

  • An Empirical Analysis of Robustness Concepts for Timetabling
    M. Goerigk, A. Schöbel,
    Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs) (14), pp. 100-113 (2010)

  • The Complexity of Integrating Routing Decisions in Public Transportation Models
    M. Schmidt, A. Schöbel,
    Proceedings of ATMOS10, OpenAccess Series in Informatics (OASIcs) (14), pp. 156-169 (2010)

  • General circle location
    M -C. Körner, J. Brimberg, H. Juel, A. Schöbel,
    Proceedings of the 21st Canadian Conference on Computational Geometry (CCCG2009), pp. 111-114 (2009)

  • Delay Management with Re-Routing of Passengers
    T. Dollevoet, M. Schmidt, A. Schöbel,
    ATMOS 2009, Dagstuhl Seminar Proceedings (2009)

  • Dynamic Algorithms for Recoverable Robustness Problems
    S. Cicerone, D. G. Stefano, M. Schachtebeck, A. Schöbel,
    ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl Seminar proceedings (2008)

  • IP-based Techniques for Delay Management with Priority Decisions
    M. Schachtebeck, A. Schöbel,
    ATMOS 2008 - 8th Workshop on Algorithmic Approaches for Transportation Modeling, Optimization, and Systems, Dagstuhl Seminar proceedings (2008)

  • Identifying dependencies among delays
    C. Conte, A. Schöbel,
    proceedings of IAROR 2007 (2007)

  • Stop location - complexity and approximation issues
    S. Mecke, A. Schöbel, D. Wagner,
    5th workshop on algorithmic methods and models for optimization of railways, Dagstuhl Seminar proceedings 06901 (2006)

  • Dominance and equilibria in the path player game
    A. Schöbel, S. Schwarze,
    Proceedings of OR 2005, Bremen, pp. 489-494 (2006)

  • Line Planning with Minimal Travel Time
    A. Schöbel, S. Scholl,
    5th Workshop on Algorithmic Methods and Models for Optimization of Railways, Dagstuhl Seminar Proceedings 06901 (2006)

  • A game-theoretic approach to Line Planning
    A. Schöbel, S. Schwarze,
    6th workshop on algorithmic methods and models for optimization of railways, Dagstuhl Seminar proceedings 06002 (2006)

  • A set-packing aproach to routing trains through railway stations
    R. Velasquez, M. Ehrgott, D. Ryan, A. Schöbel,
    40th Annual Conference of the Operations Research Society of New Zealand, pp. 305-314 (2005)

  • The Computational Complexity of Delay Management
    M. Gatto, R. Jacob, L. Peeters, A. Schöbel,
    Graph-Theoretic Concepts in Computer Science: 31st International Workshop (WG 2005), Lecture Notes in Computer Science (3787) (2005)

  • Covering population areas by railway stops
    A. Schöbel, M. Schröder,
    Proceedings of OR 2002, Klagenfurt, pp. 187-192 (2003)

  • AnSiM - GIS-gestützte Optimierung von Anschlusssicherungsmaßnahmen
    M. Schröder, A. Schöbel,
    Angewandte geographische Informationsverarbeitung XV, pp. 465-473 (2003)

  • On fair zone design in public transportation
    H W. Hamacher, A. Schöbel,
    Computer-Aided Transit Scheduling, Lecture Notes in Economics and Mathematical Systems 430, pp. 8-22 (1995)

  • Fair Zone Design in Public Transportation Networks
    A. Schöbel,
    Operations Research Proceedings 1994, pp. 191-196 (1994)

Zum Seitenanfang