Prof. Dr. Martin Grothaus
Anschrift
Gottlieb-Daimler-Straße
Gebäude: 48
Raum: 626
67663 Kaiserslautern
Postfach: 3049
67653 Kaiserslautern
Lebenslauf
2010
- Verleihung des Lehrpreises Rheinland-Pfalz
2008
- Professor (W3) für Funktionalanalysis an der Technischen Universität Kaiserslautern
- Ruf auf die W3-Professur für Funktionalanalysis an der Technischen Universität Kaiserslautern
- Ruf auf die W3-Professur für Stochastik an der Philipps-Universität Marburg
- Ruf auf die Universitätsprofessur für Wahrscheinlichkeitstheorie und Statistik an der Universität Innsbruck
2005
- Positive Evaluierung als Juniorprofessor
2002–2008
- Juniorprofessor für Funktionalanalysis an der Technischen Universität Kaiserslautern
2002
- wissenschaftlicher Mitarbeiter an der Universität Bonn und der Universität Bielefeld
2001–2002
- Humboldt-Stipendiat an der Cornell University
2000
- Verleihung eines Humboldt-Stipendiums
1999–2001
- wissenschaftlicher Mitarbeiter an der Universität Bonn
1998
- Erwerb des Titels Dr. rer. nat., Universität Bielefeld, Betreuer: L. Streit und Yu. G. Kondratiev
1996–1998
- wissenschaftlicher Mitarbeiter an der Universität Bielefeld
1996
- Erwerb des Diploms in Mathematik, Universität Bielefeld, Betreuer: Yu. G. Kondratiev
- Erwerb des Diploms in Physik, Universität Bielefeld, Betreuer: L. Streit
Forschungsinteressen
- Funktionalanalysis (Operator-Halbgruppen, Dirichlet-Formen)
- Stochastische Analysis (Konstruktion, Ergodizität und Skalierungslimiten von stochastischen Dynamiken)
- White Noise Analysis
- Mathematische Physik (Statistische Mechanik, Quantenmechanik, Quantenfeldtheorie, Polymer-Modelle)
Publikationen
- Bernido, Christopher C. (ed.); Carpio-Bernido, Maria Victoria (ed.); Grothaus, Martin (ed.); Kuna, Tobias (ed.); Oliveira, Maria João (ed.); da Silva, José Luís (ed.) (2016). Stochastic and infinite dimensional analysis. 300 p. Birkhäuser/Springer, Basel: 978-3-319-07244-9
- Eberle, A., Grothaus, M., Hoh, W., Kassmann, M., Stannat, W., Trutnau, G. (Eds.) (2018). Stochastic Partial Differential Equations and Related Fields. 229, 574. (In Honor of Michael Röckner SPDERF, Bielefeld, Germany, October 10 -14, 2016), Springer International Publishing: 978-3-319-74928-0
- M. Grothaus; S. Wittmann (2024). Mosco Convergence of Gradient Forms with Non-Convex Interaction Potential. Integral Equations and Operator Theory, 96, 29, https://doi.org/10.1007/s00020-024-02775-6
- M. Grothaus; P. Ren; F.-Y. Wang (2024). Singular degenerate SDEs: Well-posedness and exponential ergodicity. Journal of Differential Equations, 413, 632-661. https://authors.elsevier.com/a/1jjGa50j-zRTv
- B. Eisenhuth; M. Grothaus (2023). Hypocoercivity for non-linear infinite-dimensional degenerate stochastic differential equations. Stochastics and Partial Differential Equations: Analysis and Computations. https://link.springer.com/article/10.1007/s40072-023-00299-5
- W. Bock; M. Grothaus; K. Orge (2023). Stochastic Analysis for Vector-Valued Generalized Grey Brownian Motion. Theory of Probability and Mathematical Statistics, 108, 1-27. https://doi.org/10.1090/tpms/1184
- A. Bertram; M. Grothaus (2023). Convergence rate for degenerate partial and stochastic differential equations via weak Poincaré inequalities. Journal of Differential Equations. https://doi.org/10.1016/j.jde.2023.03.039 50 days' free access
- M. Grothaus; H. Pribawanto Suryawan; J. L. da Silva (2023). A white noise approach to stochastic currents of Brownian motion. Infinite Dimensional Analysis, Quantum Probability and Related Topics, 26, (1). Article No. 2250025. https://dx.doi.org/10.1142/S0219025722500254
- M. Grothaus; M. Sauerbrey (2023). Dirichlet form analysis of the Jacobi process. Stochastic Processes and their Applications, 157, 376-412. https://authors.elsevier.com/a/1gJ3s15DqVIb2d
- B. Eisenhuth; M. Grothaus (2022). Essential m-dissipativity for possibly degenerate generators of infinite-dimensional diffusion processes. Integral Equations and Operator Theory. 94, (28). https://doi.org/10.1007/s00020-022-02707-2
- A. Bertram; M. Grothaus (2022). Essential m-dissipativity and hypocoercivity of Langevin dynamics with multiplicative noise. Journal of Evolution Equations. 22, (11). https://doi.org/10.1007/s00028-022-00773-y
- M. Grothaus; M. Mertin (2022). Hypocoercivity of Langevin-type dynamics on abstract smooth manifolds. Stochastic Processes and their Applications, 146, 22-59. https://authors.elsevier.com/c/1eOw615DqVEmnw
- M. Grothaus; J. Müller; A. Nonnenmacher (2022). An improved characterisation of regular generalised functions of white noise and an application to singular SPDEs. Stochastics and Partial DifferentialEquations: Analysis and Computations, 10, 359–391. https://doi.org/10.1007/s40072-021-00200-2 und https://rdcu.be/cxbqE
- M. Grothaus; A. Nonnenmacher (2020). Overdamped limit of generalized stochastic Hamiltonian systems for singular interaction potentials. Journal of Evolution Equations. 20, 577–605. https://doi.org/10.1007/s00028-019-00530-8
- M. Grothaus; F.-Y. Wang (2019). Weak Poincaré Inequalities for Convergence Rate of Degenerate Diffusion Processes. Annals of Probability, 47, (5), 2930-2952. http://dx.doi.org/10.1214/18-AOP1328
- M. Grothaus and R. Voßhall (2018). Strong Feller property of sticky reflected distorted Brownian motion. Journal of Theoretical Probability. 31, (2), 827-852.
- M. Grothaus; R. Voßhall (2018). Integration by parts on the law of the modulus of the Brownian bridge. Stochastics and Partial Differential Equations: Analysis and Computations. 6, (3), 335-363.
- M. Grothaus; R. Voßhall (2017). Stochastic differential equations with sticky reflection and boundary diffusion. Electronic Journal of Probability. 22, (7), 37 pp.
- M. Grothaus; Felix Riemann (2017). A fundamental solution to the Schrödinger equation with Doss potentials and its smoothness. Journal of Mathematical Physics. 58, (5), 25 pp.
- B. Baur, M. Grothaus (2017). Skorokhod decomposition for a reflected Lp-strong Feller diffusion with singular drift. Stochastics. 90, (4), 539-568.
- T. Fattler; M. Grothaus; R. Voßhall (2016). Construction and analysis of a sticky reflected distorted Brownian motion. Annales de l'Institut Henri Poincaré. 52, (2), 735-762.
- M. Grothaus; N. Marheineke (2016). On a nonlinear partial differential algebraic system arising in the technical textile industry: analysis and numerics. IMA Journal of Numerical Analysis. 36, (4), 1783-1803.
- M. Grothaus; F. Jahnert (2016). Mittag-Leffler analysis II: Application to the fractional heat equation. Journal of Functional Analysis. 270, (7), 2732-2768.
- Butko, Y.A.; Grothaus, M., Smolyanov, O.G. (2016). Feynman formulae and phase space Feynman path integrals for tau-quantization of some Lévy-Khintchine type Hamilton functions. Journal of Mathematical Physics. 57, (2), 023508, 22 pp.
- M. Grothaus; P. Stilgenbauer (2016). Hilbert space hypocoercivity for the Langevin dynamics revisited. Methods of Functional Analysis and Topology. 22, (2), 152-168.
- M. Grothaus; F. Jahnert; F. Riemann; J. L. da Silva (2015). Mittag-Leffler analysis I: Construction and characterization. Journal of Functional Analysis. 268, (7), 1876-1903.
- W. Bock; M. Grothaus (2015). The Hamiltonian path integrand for the charged particle in a constant magnetic field as white noise distribution. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 18, (2), 1550010, 22 pp.
- M. Grothaus; P. Stilgenbauer (2015). A hypocoercivity related ergodicity method for singularly distorted non-symmetric diffusions. Integral Equations and Operator Theory. 83, (3), 331-379.
- B. Baur; M. Grothaus (2014). Construction and strong Feller property of distorted elliptic diffusion with reflecting boundary. Potential Analysis. 40, (4), 391-425.
- M. Grothaus; F. Riemann; H. P. Suryawan (2014). A White Noise approach to the Feynman integrand for electrons in random media. Journal of Mathematical Physics. 55, (1), 013507, 16 pp.
- M. Grothaus; A. Klar; J. Maringer; P. Stilgenbauer; R. Wegener (2014). Application of a three-dimensional fiber lay-down model to non-woven production processes. Journal of Mathematics in Industry. 14, (4), Art. 4, 19 pp.
- M. Grothaus; P. Stilgenbauer (2014). Hypocoercivity for Kolmogorov backward evolution equations and applications. Journal of Functional Analysis. 267, (10), 3515-3556.
- Bock, W.; Götz, T.; Grothaus, M.; Liyanage, U.P. (2014). Parameter estimation from occupation times-a white noise approach. Communications on Stochastic Analysis. 8, (4), 489-499.
- F. Conrad; T. Fattler; M. Grothaus (2013). An invariance principle for the tagged particle process in continuum with singular interaction potential. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 16, (4), 1350032, 37 pp.
- B. Baur; M. Grothaus; P. Stilgenbauer (2013). Construction of -strong Feller Processes via Dirichlet Forms and Applications to Elliptic Diffusions. Potential Analysis. 38, (4), 1233-1258.
- M. Grothaus; P. Stilgenbauer (2013). Geometric Langevin equations on submanifolds and applications to the stochastic melt-spinning process of nonwovens and biology. Stochastics and Dynamics. 13, (4), 135001, 34 pp.
- B. Baur; M. Grothaus; Mai T. T. (2013). Analytically weak solutions to linear SPDEs with unbounded time-dependent differential operators and an application. Communications on Stochastic Analysis. 7, (4), 551-571.
- M. Grothaus; L. Streit; A. Vogel (2012). The complex scaled Feynman-Kac formula for singular initial distributions. Stochastics. 84, (2-3), 347-366.
- B. Baur; F. Conrad; M. Grothaus (2012). Smooth contractive embeddings and application to Feynman formula for parabolic equations on smooth bounded domains. Communications in Statistics - Theory and Methods. 40, (19-20), 3452-3464.
- F. Conrad; M. Grothaus; J. Lierl; O. Wittich (2012). Convergence of Brownian motion with a scaled Dirac Delta potential. Proceedings of the Edinburgh Mathematical Society. 55, (2), 403-427.
- W. Bock; M. Grothaus (2012). White noise approach to phase space Feynman path integrals. Theory Probab. Math. Stat.. 85, 7-22.
- W. Bock; M. Grothaus; S. Jung (2012). The Feynman integrand for the charged particle in a constant magnetic field as White Noise distribution. Communications in Stochastic Analysis. 6, (4), 649-668.
- F. Conrad; M. Grothaus (2011). N/V-limit for Langevin dynamics in continuum. Reviews in Mathematical Physics. 23, (1), 1-51.
- T. Fattler; M. Grothaus (2011). Tagged particle process in continuum with singular interactions. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 14, (1), 105-136.
- M. Grothaus; M. J. Oliveira; J. L. da Silva; L. Streit (2011). Self-avoiding fractional Brownian motion - The Edwards model. Journal of Statistical Physics. 145, (6), 1513-1523.
- F. Conrad; M. Grothaus (2010). Construction, ergodicity and rate of convergence of N-particle Langevin dynamics with singular potentials. Journal of Evolution Equations. 10, (3), 623-662.
- Y. A. Butko; M. Grothaus; O. G. Smolyanov (2010). Lagrangian Feynman formulae for second order parabolic equations in bounded and unbounded domains. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 13, (3), 377-392.
- M. Grothaus; T. Raskop (2010). Limit formulae and jump relations of potential theory in Sobolev spaces. GEM: International Journal on Geomathematics. 1, (1), 51-100.
- M. Grothaus; T. Raskop (2009). The outer oblique boundary problem of potential theory. Numerical Functional Analysis and Optimization. 30, (7-8), 711-750.
- M. Grothaus; L. Streit; A. Vogel (2009). Feynman integrals as Hida distributions: the case of non-perturbative potentials. SMF, Astérisque. 327, 55-68. (Dai, Xianzhe(ed.) et al., From probability to geometry I. Festschrift in honor of the 60th birthday of Jean-Michel Bismutth)
- T. Fattler; M. Grothaus (2008). Construction of elliptic diffusions with reflecting boundary condition and an application to continuous N-particle systems with singular interactions. Proceedings of the Edinburgh Mathematical Society. Series II.. 51, (2), 337-362.
- Y. A. Butko; M. Grothaus; O. G. Smolyanov (2008). Feynman formula for a class of second order parabolic equations in a bounded domain. Doklady Mathematics. 78, (1), 1-6.
- M. Grothaus; A. Klar (2008). Ergodicity and rate of convergence for a non-sectorial fiber lay-down process. SIAM Journal on Mathematical Analysis. 40, (3), 968-983.
- F. Conrad; M.Grothaus (2008). Construction of N-particle Langevin dynamics for -potentials via generalized Dirichlet forms. Potential Analysis. 28, (3), 261-282.
- T. Fattler; M. Grothaus (2007). Strong Feller properties for distorted Brownian motion with reflecting boundary condition and an application to continuous N-particle systems with singular interactions. Journal of Functional Analysis. 246, (2), 217-241.
- Yu.G. Kondratiev; M. Grothaus; M. Röckner (2007). N/V-limit for stochastic dynamics in continuous particle systems. Probability Theory and Related Fields. 137, 121-160.
- M. Grothaus (2006). Scaling limit of fluctuations for the equilibrium Glauber dynamics in continuum. Journal of Functional Analysis. 239, (2), 414-445.
- M. Grothaus; T. Raskop (2006). On the oblique boundary problem with a stochastic inhomogeneity. Stochastics. 78, (4), 233-257.
- M. Grothaus; L. Gross (2005). Reverse hypercontractivity for subharmonic functions. Canadian Journal of Mathematics. 57, (3), 506-534.
- M. Grothaus; Yu.G. Kondratiev; E. Lytvynov; M. Röckner (2003). Scaling limit of stochastic dynamics in classical continuous systems. Annals of Probability. 31, (3), 1494-1532.
- S. Albeverio; M. Grothaus; Yu.G. Kondratiev; M. Röckner (2001). Stochastic dynamics of fluctuations in classical continuous systems. Journal of Functional Analysis. 185, (1), 129-154.
- M. Grothaus; L. Streit (2000). On regular generalized functions in white noise analysis and their applications. Methods of Functional Analysis and Topology. 6, (1), 14-27.
- M. Grothaus; Yu.G. Kondratiev; L. Streit (2000). Scaling limits for the solution of Wick type Burgers equation. Random Operators and Stochastic Equations. 8, (1), 1-26.
- M. Grothaus; L. Streit; I.V. Volovich (1999). Knots, Feynman diagrams and matrix models. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2, (3), 359-380.
- M. Grothaus; L. Streit (1999). Quadratic actions, semi-classical approximation, and delta sequences in Gaussian analysis. Reports on Mathematical Physics. 44, (3), 381-405.
- M. Grothaus; L. Streit (1999). Construction of relativistic quantum fields in the framework of white noise analysis. Journal of Mathematical Physics. 40, (11), 5387-5405.
- M. Grothaus; Yu.G. Kondratiev; G.F. Us (1999). Wick calculus for regular generalized stochastic functions. Random Operators and Stochastic Equations. 7, (3), 301-328.
- M. Grothaus; Yu.G. Kondratiev; L. Streit (1999). Regular generalized functions in Gaussian analysis. Infinite Dimensional Analysis, Quantum Probability and Related Topics. 2, (1), 1-25.
- M. Grothaus; D.C. Khandekar; J.L. Silva; L. Streit (1997). The Feynman integral for time dependent anharmonic oscillators. Journal of Mathematical Physics. 38, (6), 3278-3299.
- M. Grothaus; Yu.G. Kondratiev; L. Streit (1997). Complex Gaussian analysis and the Bargmann-Segal space. Methods of Functional Analysis and Topology. 3, (2), 46-64.
- M. Grothaus; M. Mertin; P. Stilgenbauer (2018). Hypocoercivity for geometric Langevin equations motivated by fibre lay-down models arising in industrial application. GAMM - Mitteilungen. 2018;41:e201800011, https://doi.org/10.1002/gamm.201800011
- M. Grothaus; P. Stilgenbauer (2014). Hypocoercivity for degenerate Kolmogorov equations and applications to the Langevin dynamics. P. Steinmann and G. Leugering (eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014. 999-1000.
- M. Grothaus; P. Stilgenbauer (2014). A hypocoercivity related ergodicity method for Kolmogorov equations. P. Steinmann and G. Leugering (eds.) Special Issue: 85th Annual Meeting of the International Association of Applied Mathematics and Mechanics (GAMM), Erlangen 2014. 1009-1010.
- M. Grothaus; A. Klar; J. Maringer; P. Stilgenbauer (2012). The Analysis of stochastic fiber lay-down models: Geometry and convergence to equilibrium of the basic model. Proceedings in Applied Mathematics and Mechanics, Vol. 12. 611-612.
- M. Grothaus; T. Raskop (2010). Oblique Stochastic Boundary-Value Problem. Handbook of Geomathematics. Willi Freeden et al. (eds.) 1049-1076.
- M. Grothaus; A. Vogel (2008). The Feynman integrand as a white noise distribution beyond perturbation theory. Stochastics and quantum dynamics in biomolecular systems. Bernido, Christopher C. et al. (eds.) 25-33.
- M. Grothaus (2004). Dirichlet Forms and (Stochastic) Partial Differential Equations. Oberwolfach Reports, 1(2). 1431-1432.