Frankenstein 25 - Maximal Regularity Methods in Mathematical Fluid Mechanics

The workshop will be held at the Villa Denis in Frankenstein.

Arrivals are planned for Monday, March 31, 2025, and we offer a joint dinner on Monday evening. On Wednesday afternoon, April 2, 2025, a joint exursion is planned. The scientific program starts on Tuesday morning, April 1, 2025 at 9 am and ends on Friday, April 4 , 2025, before lunch at latest 12 pm.

 

Venue: Villa Denis, Frankenstein

  • All talks will take place at the conference room in Villa Denis, Frankenstein
  • All meals (breakfast, lunch and dinner) are provided on site
  • Directions:
    • Car: To reach Villa Denis, you need about 20 minutes from Kaiserslautern. The address for your navigation device is: Diemerstein 9, 67468 Frankenstein-Diemerstein.
    • Public transport: With the S-Bahn lines S1 and S2 you can reach Frankenstein station from Kaiserslautern main station in 12 minutes (2nd stop after Kaiserslautern, in the direction of Ludwigshafen/Mannheim). Details can be found in the S-Bahn timetable. Frankenstein Train Station is just a few walking minutes away from Villa Denis.

Conference dinner and hiking tour

On Tuesday evening, April 1, 2025, a Conference dinner is planned. Wednesday, April 2, 2025, in the afternoon, we offer a hiking tour through the Palatinate Forest to the castle of Frankenstein. 

Organizing Committee

Jun. Prof. Dr. Amru Hussein

Dr. Patrick Tolksdorf

Secretary: Kirsten Höffler

This workshop is supported by the DFG Scientific Network "Maximal Regularity Methods in Mathematical Fluid Mechanics" and the University Kaiserslautern-Landau.

Accomodation

For your stay during the conference we booked rooms at the guesthouse of Villa Denis, Frankenstein.

Participants and Abstracts

    
Arendt,Wolfgang Univsität UlmNon-autonomous equations via maximal regularity and forms
Bau, SimonUniversität KonstanzEvolution equations with dynamical boundary conditions in Banach scales
Bechtel,Sebastian Université Paris-SaclayAn extended variational setting for critical (S)PDEs
Beckermann,PaulRPTU Kaiserslautern-LandauThe Concrete Dependence of Sectoriality on the Boundary Conditions
Binz,Tim TU DarmstadtGlobal well-posedness of the coupled atmosphere-ocean model of Lions,
Temam and Wang
Cioica-Licht,Petru Universität KasselStochastic PDEs on non-smooth domains: an analytic approach
de Carvalho,Francisco Dias TU DelftH∞-calculus, Singular integrals and the thin-film equation
Del SartoGianmarcoTU Darmstadt 
Denk,Robert Universität KonstanzR-boundedness of Poisson operators
Disser,Karoline Universität KasselGlobal solutions and non-trivial long-time behaviour for fluid-elastic
interaction
Eiter,Thomas Weierstraß-Institut BerlinExistence results for fluid flow around a periodically deforming body
Frey,Dorothee Karlsruhe Institut für TechnologieWell-posedness of magnetic evolution equations on adapted modulation
spaces
Furukawa,Ken University of ToyamaA diffusion equation for filtration phenomena with the fourth boundary
condition
Gaudin,Anatole TU ClausthalNearly optimal regularity for the Stokes-Dirichlet problem in rough domains
Haardt,LucaKarlsruhe Institute of TechnologyOn Kato’s square root property for the generalized Stokes operator
Haller,Robert TU Darmstadt 
Heidrich,ErikRPTU Kaiserslautern-LandauBoundedness of the H∞-calculus for the Stokes operator in Lq-spaces with
Muckenhoupt weights
Hussein,AmruRPTU Kaiserslautern-Landau 
Köhne,Matthias Heinrich-Heine Universität DüsseldorfAsymptotic Analysis for a Class of Heterogeneous Catalysis Models
Kosmala,BenjaminTU DarmstadtWolff reiteration for complex interpolation of quasi-Banach function spaces
Kunstmann,Peer Karlsruhe Institut für TechnologieFunctional calculi for Stokes operators with first order boundary conditions
Lange,Theresa Scuola Normale Superiore PisaNoise in fluid dynamics: a personal perspective
Lenz,JonasJohannes Gutenberg-Universität MainzSemilinear parabolic problems in critical Morrey spaces
Liao,Xian Karlsruhe Institue of Technology 
Lorist,EmielTU DelftFunctional calculus for the Laplacian on weighted Sobolev spaces
PalmaFilippoTU Darmstadt 
Saal,Jürgen Heinrich-Heine Universität DüsseldorfMaximal Regularity and Global Attractors
Sauer,JonasFriedrich Schiller Universität JenaWell-Posedness of the Stokes Equations on a Wedge with Navier-Slip
Boundary Conditions
Spyrka,DominikRPTU Kaiserslautern-LandauA Derivation of the Stochastic Primitive Equations
Tolksdorf,PatrickKarlsruhe Institute of Technology 
Watanabe,Keiichi Suwa University of ScienceFree boundary problem of the Navier–Stokes equations via maximal
L1-regularity
Weis,LutzKarlsruhe Institut für TechnologieMaximal regularity for parabolic stochastic evolution equations
Werner,Tobias Universität KasselStochastic PDEs on non-smooth domains: an operator theoretic perspective

Scientific Program