Prof. Dr. Surulescu
Adresse
Paul-Ehrlich-Straße
Gebäude: 31
Raum: 452
67663 Kaiserslautern
Postfach: 3049
67653 Kaiserslautern
Forschungsinteressen
- GlioMaTh: Gliomen, Mathematische Modelle und Therapieansätze
- Cell migration: the effects of contractivity and focal adhesions
- Modeling cell migration in a fibrous environment: from subcellular to population level
- Modelling of pH regulation in tumor cells & surrounding tissue: Influence on cancer cell migration
- Mathematische Modellierung, Analysis und Numerik für das Verhalten von Zellpopulationen: Ein Mehrskalenzugang
Publications
- C. Engwer, A. Hunt, and C. Surulescu. Effective equations for anisotropic glioma spread with proliferation: a multiscale approach, Mathematical Medicine & Biology, 33 (2016), 435-459, [www]
- C. Engwer, C. Stinner, and C. Surulescu, On a structured multiscale model for acid-mediated tumor invasion: The effects of adhesion and proliferation, Mathem. Models and Methods in the Applied Sciences 27 (2017) 1355-1390, [pdf]
- S. A. Hiremath, S. Sonner, C. Surulescu, and A. Zhigun, On a coupled SDE-PDE system modeling acid-mediated tumor invasion, Discr. Cont. Dyn. Syst. B, 23 (2018) 2339-2369, [www]
- S. A. Hiremath and C. Surulescu, A Stochastic Multiscale Model for Acid Mediated Cancer Invasion. Nonlinear Analysis B: Real World Applications 22 (2015) 176-205, [pdf]
- S. A. Hiremath and C. Surulescu, A stochastic model featuring acid induced gaps during tumor progression, Nonlinearity 29 (2016) 851-914, [www]
- S. A. Hiremath and C. Surulescu, Mathematical Models for Acid-Mediated Tumor Invasion: deterministic and stochastic approaches, in A. Gerisch, R. Penta, J. Lang (eds): Multiscale Models in Mechano and Tumor Biology: Modeling, Homogenization, and Applications. Lecture Notes in Computational Science and Engineering 122, Springer Verlag Heidelberg (2017) 45-71, [www]
- A. Hunt, and C. Surulescu. A multiscale modeling approach to glioma invasion with therapy. Vietnam Journal of Mathematics 45 (2016) 221-240, [www]
- J. Kelkel and C. Surulescu, A weak solution approach to a reaction-diffusion system modeling patern formation on seashells, Mathematical Methods in the Applied Sciences, 32 (2009) 2267-2286, [www]
- J. Kelkel and C. Surulescu, On a stochastic reaction-diffusion system modeling pattern formation on seashells, Journal of Mathematical Biology 60 (2010) 765-796, [www]
- P. Kloeden, S. Sonner, and C. Surulescu, A nonlocal sample dependence SDE-PDE system modeling proton dynamics in a tumor, Discrete & Continuous Dynamical Systems-B 21 (2016): 2233-2254, [www]
- J. Kroos, C. Stinner, C. Surulescu, and N. Surulescu, SDE-driven modeling of phenotypically heterogeneous tumors: The influence of cancer cell stemness, Discr. Cont. Dyn. Syst. B, in print, doi: 10.3934/dcdsb.2019157
- T. Lorenz and C. Surulescu, On a class of multiscale cancer cell migration model: well-posedness in less regular function spaces, Mathematical Models and Methods in the Applied Sciences 24 (2014) 2383-2436, [www]
- G. Meral, C. Stinner, and C. Surulescu, On a multiscale model involving cell contractivity and its effects on tumor invasion, Discrete & Continuous Dynamical Systems-B 20(2015) 189-213, [www]
- S. C. Ruoja, C. Surulescu, and A. Zhigun, On a model for epidemic spread with interpopulation contact and repellent taxis, Advanced Mathematics Science Application 28(2019), [www]
- C. Stinner, C. Surulescu, and G. Meral, A multiscale model for pH-tactic invasion with time-varying carrying capacities, IMA J. Appl. Math. 80 (2015) 1300-1321, [www]
- C. Stinner, C. Surulescu, and M. Winkler, Global weak solutions in a PDE-ODE system modeling multiscale cancer cell invasion, SIAM Journal on Mathematical Analysis 46 (2014) 1969-2007, [pdf]
- C. Stinner, C. Surulescu, and A. Uatay, Global existence for a go-or-grow multiscale model for tumor invasion with therapy, Mathematical Models and Methods in the Applied Sciences 26 (2016) 2163-2201, [www]
- C. Surulescu and N. Surulescu, Some classes of stochastic differential equations as an alternative modeling approach to biomedical problems, in P. Kloeden and C. Pötzsche (eds.), Random and Nonautonomous Dynamical Systems in the Live Sciences, Springer LNM 2102 (Biomathematics Series), (2013), 269-307, [www]
- C. Winkel, S. Neumann, C. Surulescu, and P. Scheurich, A minimal mathematical model for the initial molecular interactions of death receptor signaling, Mathematical Biosciences and Engineering 9 (2012), 663-683, [www]
- M. Winkler and S. Surulescu, Global weak solutions to a strongly degenrate haptotaxis model, Communications in mathematical science, 15 (2017) 1581-1616, [www]
- A. Zhigun C. Surulescu, and A. Hunt, A Strongly degenerate diffusion-haptotaxis model of tumour invasion under the go-or-grow dichotomy hypotheses, Mathematical Methods in the Applied Sciences, 41 (2018), 2403-2428, [www]
- A. Zhigun, C. Surulescu, and A. Uatay, Global existence for degenrate haptotaxis model of cancer invasion, Zeitsch. Angew. Math. Phys., 67(2016), 146, [www]
- M. Krasnianski, C. Surulescu, and A. Zhigun, Nonlocal and local models for taxis in cell migration: a rigorous limit procedure, arXiv: 1908.10287.
- C. Surulescu and M. Winkler, Does indirectness of signal production reduce the explosion-supporting potential in chemotaxis-haptotaxis systems? Global classical solvability in a class of models for cancer invasion (and more), arXiv: 1904.11210.
- J. Li, L. Chen, and C. Surulescu, Global boundedness and hair trigger effect of solutions for anonlocal reaction-diffusion equation in population dynamics, arXiv:1909.07934.
- C. Surulescu, Dynamical Systems, Skript zur Vorlesung im WS 2013/14, TUK.
- C. Surulescu, Nonlinear Partial Differential Equations, Skript zur Vorlesung im WS 2013/14, TUK.
- C. Surulescu, Einführung: Gewöhnliche Differentialgleichungen, Skript zur Vorlesung im SS 2014, TUK.
- C. Surulescu, Vektoranalysis, Skript zur Vorlesung im SS 2014, TUK.
- C. Surulescu, Partial Differential Equations: An Introduction, Skript zur Vorlesung im WS 2017/18, TUK.
- C. Surulescu, Mathematical Biology, Skript zur Vorlesung im SS 2018, TUK.
- C. Surulescu, Reaction-Diffusion Equations, Skript zur Vorlesng im SW 2018/19, TUK.