Prof. Dr. René Pinnau


Building: 48
Room: 577
67663 Kaiserslautern

P.O. Box: 3049
67653 Kaiserslautern


Tel.: +49 631 205 2849

Fax: +49 631 205 4986


Curriculum Vitae

  • 1971: Born in Berlin

  • 1990-1996: Studies in Industrial Mathematics, TU Berlin

  • 1996: Diploma in Industrial Mathematics with P. Markowich

  • 1996 - 1999: Scholarship in the Graduate College "Industrial Mathematics",
    U Kaiserslautern

  • 1999: PhD in Mathematics with A. Unterreiter

  • 1999: Research Assistant, FB Mathematik,
    TU Berlin

  • 1999-2004 : Assistant Professor, FB Mathematik,
    TU Darmstadt

  • 2002-2004 : Juniorprofessor, FB Mathematik,
    TU Darmstadt

  • 2004 : Habilitation in Mathematics

  • 2004-: Professor for Industrial Mathematics, FB Mathematik,
    TU Kaiserslautern

  • 2004-: Scientific Advisor for the Fraunhofer ITWM

  • 2009: Call to a Professorship for Optimization,
    Universität Hamburg (declined)

  • 2009: Call to a Professorship for Scientific Computing,
    TU Darmstadt (declined)

  • 2010-2018: Council Member of the European Consortium for Mathematics in Industry (ECMI)

  • 2011-2014: Dean, FB Mathematik, TU Kaiserslautern

  • 2011-2014: Senator of the TU Kaiserslautern

  • 2014-: Vice-Dean, FB Mathematik, TU Kaiserslautern 


  1. S. Frei, H. Andrä, R. Pinnau, O. Tse.  An adjoint-based gradient-type algorithm for optimal fiber orientation in fiber-reinforced materials. COAP 62(1):111-129 (2015).
  2. R. Pinnau, O. Tse. On a regularized system of self-gravitating particles. Kinet. Relat. Models, 7(3):591-604 (2014).
  3. S. Herkt, M. Hinze, R. Pinnau. Convergence analysis of Galerkin POD for linear second order evolution equations. ETNA 40:321-337 (2013).
  4. C. Drago, N. Marheineke, R. Pinnau. Semiconductor device optimization in the presence of thermal effects. ZAMM 93(9):700-705 (2013).
  5. A. Jüngel, R. Pinnau, E. Röhrig. Existence analysis for a simplified energy-transport model for semiconductors.  MMAS 36:1701-1712 (2013).
  6. O. Tse, R. Pinnau. Optimal Control of a Simplified Natural Convection-Radiation Model. CMS 11(3):679-707(2013).
  7. O. Tse, R. Pinnau, N. Siedow. Identification of Temperature Dependent Parameters in Laser-Interstitial Thermo Therapy. M3AS 22 (2012).
  8. N. Marheineke, R. Pinnau. Model hierarchies in space mapping optimization - Feasibility study for transport processes. J. Comp. Meth. Sci. Eng. 12:63-74 (2012).
  9. N. Marheineke, R. Pinnau, E. Resendiz. Space mapping-focused control techniques for particle dispersions in fluids. Opt. Eng. 13(1):101-120 (2012).
  10. A.I.K. Butt, R. Pinnau. Optimal Control of a Non-isothermal Tube Drawing Process.  J. Eng. Math. 76:1-17 (2012).
  11. N. Marheineke, S. Repke, R. Pinnau. On adjoint-based optimization of a free surface Stokes flow.  SIAM J. Appl. Math. 71(6):2168-2184 (2011).
  12. A. Jüngel, R. Pinnau, E. Röhrig. Analysis of a bipolar energy-transport model for a metal-oxide-semiconductor diode. JMAA 378(2):764-774 (2011).
  13. J. Marburger, N. Marheineke, R. Pinnau. Adjoint based optimal control using mesh-less discretzations. JCAM 235(10):3138-3150 (2011).
  14. M. Frank, A. Klar, R. Pinnau. Optimal Control of Glass Cooling Using Simplified P_N Theory. TTSP 39(2-4):282-311 (2010).
  15. H. Lang, K. Dressler, R. Pinnau and M. Speckert. Comparison of Solutions of the Elastic and Elastoplastic Boundary Value Problems. ZAMP 61(4):635-653 (2009).
  16. H. Lang,  K. Dressler, R. Pinnau, M. Speckert. Notes on Lipschitz Estimates for the Stop and Play Operator in Plasticity. AML 22(4):623-627 (2009).
  17. M.Burger, R.Pinnau. A Globally Covergent Gummel Map for Optimal Dopant Profiling. M3AS 19(5):769-786 (2009).
  18. J.M. Ruiz, R. Pinnau.  Convergent Nonlinear Finite Element Discretizations of the Density Gradient Equation for Quantum Semiconductors. JCAM 223(2):790-800 (2009).
  19. R. Illner, C. Kirchner, R. Pinnau.  A Derivation of the Aw-Rascle Traffic Models from Fokker-Planck Type Kinetic Models. QAM 67(1):39-45  (2009).
  20. M.Burger, R.Pinnau, M.Wolfram. On-/Off-State Design of Semiconductor Doping Profiles. CMS 6(4):1021-1041 (2008).
  21. S. Pereverzyev, R. Pinnau, N. Siedow. Initial temperature reconstruction for nonlinear heat equation: Application to a coupled radiative-conductive heat transfer problem. IPSE 16(1),  55-67 (2008).
  22. C. Drago, R. Pinnau.  Optimal Dopant Profiling Based on Energy-Transport Semiconductor Models. M3AS 18(2), 195-214 (2008).
  23. R. Pinnau.  Analysis of Optimal Boundary Control for Radiative Heat Transfer Modelled by the SP_1-System. CMS 5(4), 951-969 (2007).
  24. R. Pinnau,  A. Schulze.  Model Reduction Techniques for Frequency Averaging in Radiative Heat Transfer. JCP 226(1), 712-731 (2007).
  25. M. Herty, R. Pinnau,  M. Seaid.  On Optimal Control Problems in Radiative Transfer. OMS 22(6), 917-936 (2007).
  26. M. Herty, R. Pinnau,  G. Thömmes.  Asymptotic and Discrete Concepts for Optimal Control in Radiative Transfer. ZAMM 87(5), 333-347 (2007).
  27. M. Frank, R. Pinnau.  Existence and Bounds for the Half Moment Entropy Approximation to Radiative Transfer. Appl. Math. Lett. 20(2), 189-193 (2007). 
  28. Th. Götz, R. Pinnau.  Nanoscale Poiseulle Flow of Charged Particles. JMAA 332, 551-563 (2007).
  29. M. Hinze, R. Pinnau.  A Second Order Approach to Optimal Semiconductor Design. JOTA 133, 179-200 (2007).
  30. R. Pinnau,  A. Schulze.  Newton's Method for Optimal Temperature-Tracking of Glass Cooling Processes. IPSE 15(4), 303-323 (2007).
  31. M. Hinze, R. Pinnau.  Mathematical Tools in Optimal Semiconductor Design. Bulletin of the Institute of Mathematics, Academia Sinica (New Series) 4(2), 569-586 (2007).
  32. Th. Götz, R. Pinnau,  J. Struckmeier.  Optimal Control of Crystallization Processes. M3AS 16(12), 2029-2045 (2006).
  33. S. Pereverzyev, R. Pinnau, N. Siedow.  Regularized Fixed Point Iterations for Nonlinear Inverse Problems. Inverse Problems 22, 1-22 (2006).
  34. M. Seaid,  A. Klar, R. Pinnau.  Numerical Solvers for Radiation and Conduction in High Temperature Gas Flows. Flow, Turbulence and Combustion 75, 173-190 (2005).
  35. M. Schäfer,  M. Frank, R. Pinnau.  A Hierarchy of Approximations to the Radiative Heat Transfer Equations: Modelling, Analysis and Simulation. Math. Mod. Meth. Appl. Sci. 15, 643-665 (2005).
  36. R. Pinnau.  Uniform Convergence of an Exponentially Fitted Scheme for the Quantum Drift Diffusion Model. SIAM J. Numer. Anal. 42, No. 4, 1648-1668 (2004).
  37. M. Seaid,  M. Frank ,  A. Klar, R. Pinnau,  G. Thömmes.  Efficient Numerical Methods for Radiation in Gas Turbines. J. Comput. Appl. Math. 170 (1), 217-239 (2004).
  38. R. Pinnau,  G. Thömmes.  Optimal Boundary Control of Glass Cooling Processes. Math. Methods Appl. Sci. 27 (11), 1261-1281 (2004) 
  39. M. Burger , R. Pinnau.  Fast optimal design of semiconductor devices.  SIAM J. Appl. Math. 64, No. 1, 108-126 (2003).
  40. A. Jüngel , R. Pinnau.  Convergent Semidiscretization of a Nonlinear Fourth Order Parabolic System. M2AN 37, No. 2, 277-289 (2003). 
  41. R. Pinnau.  Numerical Study of the Quantum Euler Poisson Model. Appl. Math. Lett. 16, 939-944 (2003).
  42. P. Amster, R. Pinnau.  Convergent Iterative Schemes for a Non-isentropic Hydrodynamic Model for Semicondcutors.  Z. Angew. Math. Mech. 82, No. 8, 559-566 (2002).
  43. G. Thömmes, R. Pinnau,  M. Seaid,  Th. Götz,  A. Klar.  Numerical Methods and Optimal Control for Glass Cooling Processes. Transp. Theory Stat. Phys. 31, No. 4-6, 513-529 (2002).
  44. M. Hinze, R. Pinnau.  An Optimal Control Approach to Semiconductor Design. Math. Mod. Meth. Appl. Sc. 12, No. 1, 89-107 (2002).
  45. R. Pinnau.  A Review on the Quantum Drift Diffusion Model. Transp. Theory Stat. Phys. 31, No. 4-6, 367-395 (2002).
  46. R. Pinnau.  Numerical Approximation of the Transient Quantum Drift Diffusion Model. Nonlin. Anal. 47, 5849-5860 (2001). 
  47. A. Jüngel, R. Pinnau.  A Positivity-preserving Numerical Scheme for a Nonlinear Fourth Order Parabolic System. SIAM J. Numer. Anal. 39, No. 2, 385-406 (2001).
  48. A. Jüngel, R. Pinnau.  Global Non-Negative Solutions of a Nonlinear Fourth-Order Parabolic Equation for Quantum Systems. SIAM J. Math. Anal. 32, No. 4, 760-777 (2000).
  49. R. Pinnau. The Linearized Transient Quantum Drift Diffusion Model - Stability of Stationary States. Z. Angew. Math. Mech. 80, No. 5, 327-344 (2000).
  50. R. Pinnau,  A. Unterreiter.  The Stationary Current-Voltage Characteristics of the Quantum Drift Diffusion Model. SIAM J. Numer. Anal. 37, No. 1, 211-245 (1999).
  51. R. Pinnau. A Note on Boundary Conditions for Quantum Hydrodynamic Equations. Appl.Math. Lett. 12, 77-82 (1999).

Publications in Refereed Proceedings

  1. R. Pinnau, N. Siedow. Optimization and Inverse Problems in Radiative Heat Transfer. In Constrained Optimization and Optimal Control for Partial Differential Equations, Birkhaeuser, International Series of Numerical Mathematics, Vol. 160, pp 583--597 (2011).
  2. E. Röhrig, R. Pinnau. Stability of stationary states of a quantum energy transport model for semiconductors.  PAMM 11(1):691-692 (2011).
  3. O. Tse, R. Pinnau, N. Siedow. Identification of Temperature Dependent Parameters in a Simplified Radiative Heat Transfer. Australian Journal of Basic and Applied Sciences 5(1):7-14 (2011)
  4. C. Leithäuser, R. Feßler, R. Pinnau. Shape optimization for stokes flows using con- formal metrics. PAMM, 10(1):581-582 (2010).
  5. O. Tse, R. Pinnau, N. Siedow. Identification of Temperature Dependent Parameters in Radiative Heat Transfer. Proc. Appl. Math. Mech. 10(1):593-594 (2010).
  6. G. Thömmes, R. Pinnau. Space Mapping and Optimal Control in Radiative Transfer. AIP Conf. Proc. 1168:1061-1063 (2009).
  7. S. Herkt, K. Dreßler, R. Pinnau. Model Reduction of Nonlinear Problems in Structural Mechanics.  ESMC EuroMech (2009).
  8. N. Marheineke, R. Pinnau,  E. Resendiz.  Space Mapping Approach for Particle Control in Turbulent Flows. Proc. Appl. Math. Mech. 8(1), 10015-10018 (2008).
  9. Sergiy Pereverzyev Jr, Rene Pinnau, Norbert Siedow, Approximate solution of nonlinear inverse problems by fixed-point iteration. J. Phys.: Conf. Ser., 135:012081 (2008)
  10. R. Pinnau. Model Reduction via Proper Orthogonal Decomposition.  In W.H.A. Schilder, H. van der Vorst: Model Order Reduction: Theory, Research Aspects and Applications, pp. 96-109, Springer (2008).
  11. R. Pinnau, M. Seaid.  Simplified P_N Models nad Natural Convection-Radiation. Progress in Industrial Mathematics, Vol. 12, pp. 397-401 (2008).
  12. J.M. Ruiz, R. Pinnau.  Finite Element Discretizations for the Density Gradient Equation. Applied an Industrial Mathematics  in Italy II, pp. 492-401 (2008).
  13. M. Burger,  M. Hinze, R. Pinnau.  Optimization Models for Semiconductor Dopant Profiling. In Transport Phenomena and Kinetic Theory (MSSETS), 91-115, Birkhäuser (2007).
  14. M. Schäfer, M. Frank, R. Pinnau. Partial Space Moment Approximation for Radiative Transfer. PAMM 6(1):761-761 (2006).
  15. R. Pinnau,  A. Schulze.  Radiation, Frequency Averaging and Proper Orthogonal Decomposition. Proc. Appl. Math. Mech. 6(1), 791-794 (2006).
  16. Th. Götz, R. Pinnau,  J. Struckmeier.  Control of crystallization processes. Proc. Appl. Math. Mech. 6(1) 785-786 (2006).
  17. S. Pereverzyev, R. Pinnau, N. Siedow.  Initial Temperature Reconstruction for a Nonlinear Heat Equation: Application to Radiative Heat Transfer.
  18. D. Lesnic (ed.), Proceedings of the 5th International Conference on Inverse Problems in Engineering: Theory and Practice, Cambridge. Vol. III, ch. P02, pp.1-8 (2005).
  19. Th. Götz, R. Pinnau,  J. Struckmeier.  Optimal Control for non-isothermal crystallization of polymers. Proc. Appl. Math. Mech. 5(1), 661-662 (2005).
  20. M. Seaid,  A. Klar, R. Pinnau.  Numerical Solvers for Radiation and Conduction in High Temperature Gas Flows. Proc. Intl. Workshop on Trends in Nuemrical and Physical Modelling of Turbulent Processes in Gas Turbine Combustors, 167-172 (2004).
  21. M. Frank ,  A. Klar, R. Pinnau,  M. Seaid,  G. Thömmes.  A Comparative Numerical Study of Approximations to the Radiative Heat Transfer Equation. Progress in Computational Fluid Dynamics 4, 191-197 (2004).
  22. R. Pinnau.  A Scharfetter-Gummel Type Discretization of the Quantum Drift Diffusion Model. Proc. Appl. Math. Mech. 2, 37-40 (2003).
  23. M. Hinze, R. Pinnau.  Optimal Control of the Drift Diffusion Model for Semiconductor Devices. Int. Ser. Num. Math. 139, 95-106, Birkhäuser (2001)
  1. R. Pinnau, S. Rau, F. Schneider. Optimal Quantum Semiconductor Design based on the Quantum Euler-Poisson Model. Submitted (2012).
  2. R. Pinnau, E. Röhrig. Stability of a linearized transient quantum-energy transport model. Submitted (2012).
  3. R. Pinnau, E. Röhrig. An extended Gummel iteration for a quantum-energy transport model. Submitted (2012).