Algebra, Geometry and Computer Algebra Group

Jun.-Prof. Dr. Caroline Lassueur


building 48, room 409
67663 Kaiserslautern

Postfach 3049
67653 Kaiserslautern


Tel.: +49 631 205 2515
Fax: +49 631 205 4427
E-Mail: lassueur[at]

Additional links

Teaching SS 2023




  • Reading Courses / Praktika / B.Sc. Theses / M.Sc. Theses: possible at any time. Just drop by my office to discuss topics.


Previous Semesters:


Short CV

WS 2023/24Interim Professorship for Algebra and Number Theory, Leibniz University Hannover
01.2023 - datoJunior-professorship for Representation Theory, Rheinland-Pfälzische Technische Universität Kaiserslautern-Landau
WS 2021/22Interim Professorship for Algebra and Number Theory, RWTH Aachen University
10.2016 - 12.2022Junior-professorship for Representation Theory, TU Kaiserslautern
03/04.2018MSRI Research Membership
03.-12.2016TU Nachwuchsring Research Funding
2016Obtained: Advanced-Postdoc.Mobility-Fellowship of the Swiss National Foundation
10.2014-09.2015Scientific Assistant, TU Kaiserslautern
09.2013-09.2014Fellowship for Early Career Researcher of the Swiss National Foundation
10.2012-08.2013Scientific Assistant, TU Kaiserslautern
04.2012-08.2012Scientific Collaborator, EPFL (CH)
02.2008-03.2012Doctoral Thesis in Mathematics (Dr. ès Sciences), EPFL (CH)
10.2006-02.2007Master Thesis at the University of Hamburg
03.2005-03.2007M.Sc. in Mathematics, EPFL (CH)
10.2002-02.2005B.Sc. in Mathematics, University of Lausanne + EPFL (CH)
08.2001-07.2002Certificate of Proficiency in English, Nelson (NZ)
09.1998-07.2001Matura, Gymnase d'Yverdon (CH)


  • Oral Exams:
    • 22.04.2024,  8:00+ (own exams)
    • 23.04.2024,  8:00+ (own exams / with F. Kämmerer)
    • Registrations: are taken care of by Frau Sternike


Research interests

Finite groups;
Representation theory of finite groups:

  •  modular representation theory,
  •  ordinary representation theory and character theory,
  •  block theory,
  •  equivalences of block algebras,
  •  p-permutation modules,

Representation theory of finite-dimensional algebras;
Homological algebra and cohomology of groups;
Auslander-Reiten quiver theory;
Algorithmic methods applied to the above topics.


  • A tour of \(p\)-permutation modules and related classes of modules. To appear in Jahresber. Dtsch. Math.-Ver. (Survey article)
  • On the source-algebra equivalence class of blocks with cyclic defect groups, Part I.  To appear in Beitr. Algebra Geom. 
    (with G. Hiß)
  • Trivial source character tables of \(\text{SL}_2(q)\), Part I.  J. Algebra 598 (2022), 308-350
    (with N. Farrell and B. Böhmler)
  • The classification of the trivial source modules in blocks with cyclic defect groups. Algebr. Represent. Theory 24 (2021), 673–698.
    (with G. Hiß)
  • Splendid Morita equivalences for principal 2-blocks with dihedral defect groups. Math. Z. 294 (2020), 639–666.
    (with S. Koshitani)
  • Endo-trivial modules: a reduction to \(p'\)-central extensions. Pacific J. Math. 287 (2017), 423–438.
    (with J. Thévenaz)
  • Simple endotrivial modules for quasi-simple groups.  J. reine angew. Math. 712 (2016), 141–174.
    (with G. Malle and E. Schulte)
  • Endotrivial modules for the sporadic groups and their covers. J. Pure Appl. Algebra. 219 (2015), 4203–4228.
    (with N. Mazza)
  • The Dade group of a finite group, J. Pure Appl. Algebra 217 (2013), 97–113.
Go to top